Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, + Nếu n là số chẵn => n - 4 là số chẵn => (n - 4)(n - 5) là số chẵn
+ Nếu n là số lẻ => n - 5 là số chẵn => (n - 4)(n - 5) là số chẵn
Vậy (n - 4)(n - 5) là số chẵn với mọi n thuộc Z
b, B = n.n - n - 1
B = n(n - 1) - 1
Vì n và n - 1 khác tính chẵn lẻ nên n là số chẵn hoặc n - 1 là số chẵn
=> n(n - 1) là số chẵn
=> n(n - 1) là số lẻ
Vậy...
1. A.
\(n+2⋮n+1\)
\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\)
Mà \(\left(n+1\right)⋮\left(n+1\right)\)
Nên \(1⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)€\)Ư(1)
(n+1) € {1;—1}
TH1: n+1=1 TH2: n+1=—1
n =1–1 n =—1 —1
n =0 n =—2
Vậy n€{0;—2}
1a)
n+2 chia hết cho n-1
hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)
Mà (n-1) chia hết cho n-1
nên 3 chia hết cho n-1
Suy ra n-1 thược Ư(3)={1;-1;3;-3}
Suy ra n thuộc {2;0;4;-2}
b) 3n-5 chia hết cho n-2
hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)
3(n-2)+1 chia hết cho n-2
Mà 3(n-2) chia hết cho n-2
nên 1 chia hết cho n-2
Suy ra n-2 thược Ư(1)={1;-1}
Suy ra n thuộc {3;1}
Đặt \(A=\frac{n+3}{n-2}\left(ĐKXĐ:x\ne2\right)\)
Ta có:\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A nguyên thì 5 chia hết cho n-2. Hay \(\left(n-2\right)\inƯ\left(5\right)\)
Ư (5) là:[1,-1,5,-5]
Do đó ta có bảng sau:
n-2 | -5 | -1 | 1 | 5 |
n | -3 | 1 | 3 | 7 |
Vậy để A nguyên thì n=-3;1;3;7
Vì n thuộc Z nên n+3 và n-2 cũng thuộc Z
Mà n+3/n-2 thuộc Z nên n+3 chia hết cho n-2
=>(n-2)+5chia hết cho n-2
=>5 chia hết cho n-2
=>n-2 thuộc ƯC (5)={5;-5;1;-1}
=>n thuộc {7;-3;3;1)
Vậy n thuộc..........
de a nguyen thi 3n-7/n+1 phai nguyen
=>3n-7 chia het cho n+1
=>3n-7-3*(n+1)chia het cho n+1
=>-10 chia het cho n+1
n+1 thuốc Ư(-10)
tự do giải ra ta cón
n=0,9,1,4,-2,-3,-6,-9
\(\frac{n^{2014}+n^{2013}+2}{n+1}\)=\(\frac{n\cdot n^{2013}+n^{2013}+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)+2}{n+1}\)=\(\frac{n^{2013}\cdot\left(n+1\right)}{n+1}+\frac{2}{n+1}\)=\(n^{2013}+\frac{2}{n+1}\)
Để \(\frac{n^{2014}+n^{2013}+2}{^{n+1}}\)là số nguyên thì 2⁞n+1=>n+1 thuộc ước của 2