Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n+11 chia hết cho n -1
suy ra (n+11)-(n-1) chia hết cho n-1
suy ra 12 chia hết cho n-1
n-1 E {1;2;4;6;12}
Câu b tương tự
c, n2+2n+6
n.n+2.n+6
=n.(n+2)+6 chia hết cho n+4
Ta có n.(n+4) chia hết cho n+4
suy ra 2n - 6 chia hết cho n+4
n-10 chia hết cho n+4
-14 chia hết cho n+4
suy ra n=10;3
d, suy ra n2 chia hết cho n+1
Ta có: n.(n+1)=n2+n chia hết cho n+1
suy ra n chia hết cho n+1
-1 chia hết cho n+1
suy ra n=0
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
a)
(2n+1) chia hết cho (n+3)
=> (2n+6) - 5 chia hết cho (n+3)
Mà 2n+6 chia hết cho (n+3)
nên 5 chia hết cho (n+3)
=> (n+3)={0;5;10;15,...}
=> n={-3;2;7;12;...}
Mà n thuộc N
=> n={2;7;12;....}
Mấy câu sau bạn làm tương tự nha.
CHÚC BẠN HOK TỐT !!!!!!!!!!
a) \(\left(2n+1\right)⋮\left(n-3\right)\)
\(\Leftrightarrow\left(2n-6\right)+7⋮\left(n-3\right)\)
\(\Leftrightarrow2\left(n-3\right)+7⋮\left(n-3\right)\)mà \(2\left(n-3\right)⋮\left(n-3\right)\)
\(\Leftrightarrow7⋮\left(n-3\right)\)
\(\Leftrightarrow\left(n-3\right)\inƯ\left(7\right)\)Mặt khác \(n\in N\) nên\(n-3\in N\)
\(\Leftrightarrow n-3=7\)
\(\Leftrightarrow n=10\)
b) \(\left(n+8\right)⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)+19⋮\left(n-11\right)\)mà \(\left(n-11\right)⋮\left(n-11\right)\)
\(\Leftrightarrow19⋮\left(n-11\right)\)
\(\Leftrightarrow\left(n-11\right)\inƯ\left(19\right)\)Mặt khác \(n\in N\)nên \(n-11\in N\)
\(\Leftrightarrow n-11=19\)
\(\Leftrightarrow n=30\)
ta có 4 + n = n^2 + 4n
suy ra ( n^2 + 7n + 2 ) - ( n^2 + 4n ) chia hết cho 4 + n = 3n +2 chia hết cho n + 4
n + 4 = 3n + 12
suy ra ( 3n + 12 ) - ( 3n + 2 ) chia hết cho n + 4 = 10 chia hết cho n + 4
vậy n + 4 thuộc ước của 10
ta có
n + 4 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | -3 | -5 | -2 | -6 | 1 | -9 | 6 | -14 |
tm | tm | tm | tm | tm | tm | tm | tm |
vậy có 8 THTM
a) n + 4 chia hết cho n + 1
<=> n + 1 + 3 chia hết cho n + 1
Vì n + 1 chia hết cho n + 1 => 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3). Vì n là số tự nhiên => n + 1 thuộc {1 ; 3}
=> n thuộc {0 ; 2}
c) n2 + n chia hết cho n2 +1 (1)
<=> n2 + 1 + n - 1 chia hết cho n2 + 1
Vì n2 + 1 chia hết cho n2 + 1 => n - 1 chia hết cho n2 + 1
=> n.(n - 1) = n2 - n chia hết cho n2 + 1 (2)
Từ (1) và (2) và vì n là số tự nhiên => n thuộc {0 ; 1}
a)
n + 4 = n + 1 + 3
vì n +1 chia hết cho n + 1
=> 3 phải chia hết cho n + 1
Ư(3) = {1;3}
+) n + 1 = 1 => n = 0
+) n + 1 = 3 => n = 2
=> n = {0;2}
cậu dựa vào đó làm nha
a) 10 chia hết cho n-1
n-1 thuộc Ư của (10)={1,2,5,10}
n thuộc {2,3,7,11}
A)n+11\(⋮\)n-1
n-1\(⋮\)n-1
n+11-(n-1)\(⋮\)n-1
n+11-n-1\(⋮\)n-1
10\(⋮\)n-1
\(\Rightarrow\)n-1={1;2;5;10}
\(\Rightarrow\)n={2;3;6;11}
b)7.n\(⋮\)n-11
7n:\(⋮\)
n-1
7n-7n:n-1
0:n-1
Vậy n-1={0}
Vậy n={1}