Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) trường hợp 1: chia 3 dư 0
-> chia hết cho 3
trường hợp 2 : chia 3 dư 1 -> n=3k+1
(3k+1)(3k+3)(3k+4 )
3(3k+1)(k+1)(3k+4) chia hết cho3
trường hơp 3; chia 3 dư hai-> n=3k+2
(3k+3)(3k+4)(3k+5)=3(k+1)(3k+4)(3k+5) chia hết cho 3
( ban kiem tra de dung khong 3 so tn lien tiep mới dc : (n+1)(n+2)(n+3)
câu 1 sai đề
Vì n(n+2)(n+3) = 3n+2+3 = 3n+5
3n chia hết cho 3 mà 5 ko chia hết cho 3
Suy ra với mọi STN n thì n(n+2)(n+3) ko chia hết cho 3
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
Bài 2: Với n lẻ thì n+3 chẵn => Cả tích chia hết cho 2
Với n chẵn thì n+6 hcawnx => Cả tích chia hết cho 2
Bài 3: Xét 2 trường hợp n chẵn, lẻ như bài 2
Bài 4 bạn ghi thiếu đề
1:Từ 1 đến 100 có bao nhiêu số chia hết cho 2 , bao nhiêu số chia hết cho 5 ?
2:Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) . ( n + 6 ) chia hết cho 2 ?
3:Chứng tỏ gọi rằng với mọi stn n thì tích n . ( n + 5 ) chia hết cho 2 ?
4: Gọi A = n2 + n + 1 . ( n e N ) ( nghĩa là n thuộc stn bất kì )
Bài 1
Số các số chia hết chia hết cho 2 là
(100-2):2+1=50 ( số )
Số các số chia hết cho 5 là
(100-5):5+1=20 ( số)
\(\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\)
Ta có : \(n-1;n+1\)là hay số tự nhiên chẵn hoặc lẻ
=> \(\left(n-1\right)\left(n+1\right)\)chia hết cho 24 với mọi n > 3
Do n nguyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1 => n2 - 1 chia hết cho 3 (1)
Do n nguyên tố > 3 => n lẻ => n2 lẻ
=> n2 chia 8 dư 1 => n2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3;8)=1 => n2 - 1 chia hết cho 24 ( đpcm)