Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=21
=>x-1=20
B=x^6-x^5(x-1)-x^4(x-1)-...-x(x-1)+3
=x^6-x^6+x^5-x^5+x^5-...-x^2+x+3
=x+3
=21+3=24
20 x 2 + 20 x 3 + 20 x 4 +20
=40 + 60 + 80 + 20
=100+80+20
=180+20
=200
a) Vì\(x=99\Rightarrow x+1=100\)
Thay x+1=100 vào biểu thức A ta được :
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-9\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+9\)
\(=x+9\)
\(=99+9\)
\(=108\)
b) Tương tự
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)+x\left(x-99\right)-9\)
\(\Rightarrow A=x^4\left(99-99\right)-x^3\left(99-99\right)+x^2\left(99-99\right)+x\left(99-99\right)-9\)
\(\Rightarrow A=x^4.0-x^3.0+x^2.0+x.0-9\)
\(\Rightarrow A=0-0+0+01-9=-9\)
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)
a, \(\overline{20x5}\) \(⋮\) 9 ⇔ 2 + 0 + 5 + \(x\) ⋮ 9 ⇔ \(x\) + 2 ⋮ 9 ⇒ \(x\) = 7
Vậy \(x=7\)
b, \(\overline{x998y}\) \(⋮\) 2; 3 và 5
\(\overline{x998y}\) \(⋮\) 2 và 5 ⇔ \(y\) = 0
\(\overline{x998y}\) \(⋮\) 3 ⇔ \(x+9+9+8\) +y ⋮ 3 ⇒ \(x\) + 2 ⋮ 3 ⇒ \(x\) = 1; 4; 7
Vậy các cặp \(x;y\) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(1; 0); (4; 0); (7; 0)
c, \(\overline{87xy}\) \(⋮\) 9 ⇔ 8 + 7 + \(x+y\) ⋮ 9 ⇒ \(x+y\) + 6 ⋮ 9
\(x-y=4\) ⇒ \(x=4+y\). Thay \(x\) = 4 + y vào biểu thức \(x+y+6\)⋮9
ta có: 4+\(y+y\) +6 \(⋮\) 9 ⇒ 1 + 2⋮ 9 ⇒ 2\(y\) = 8⇒ y =4; \(x\) = 4+4 =8
Vậy \(x=8;y=4\)
a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A
\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B
\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)
\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)
\(B=1\)
Chúc bạn học tốt!!!
0 nha bạn
thay x=21, ta có
N = \(21^6-20\cdot21^5-20\cdot21^4-20\cdot21^3-20\cdot21^2-20\cdot21+3\)
\(N=21.21^5-20\cdot21.21^4-20\cdot21\cdot21^3-20\cdot21\cdot21^2-20\cdot21\cdot21-20\cdot21+3\)
tiếp theo bn rút t/s chung ra rồi tiếp tục làm nhé mk hơi ngại làm