Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3
Ta phải chứng minh rằng Sk+1 3
Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.
Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n - 1
Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9
Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.
Ta phải chứng minh Sk+1 9.
Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9
Vậy (4n + 15n - 1) 9 với mọi n ε N*
Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)
\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)
Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\)
. \(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé
TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)
nên \(n^2+6n+20\)không là số chính phương
Mà \(\left(n^2+6n+20\right)⋮11\)
\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)
Vậy \(n^2+6n+20\)không chia hết cho 121 (ĐPCM)
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Thay : “số tự nhiên n chia hết cho 6” bới P, “số tự nhiên n chia hết cho 3” bởi Q, ta được mệnh đề R có dạng: “Nếu P thì Q”
\(n.n+3n+6\)
\(=n^2+3n+6\)
Đặt cột dộc ta có :
n2 + 3n + 6 | n + 3
n2 + 3n | n
_________|
0 + 0 + 6
Để phép chia trên là phép chia hết thì :
\(6⋮n+3\Rightarrow n\inƯ\left(6\right)=\left\{1;-1;6;-6\right\}\)
+ ) n + 3 = 1
n = -2
+ ) n + 3 = -1
n = -4
+ ) n + 3 = 6
n = 3
+) n + 3 = -6
n = -9
Vậy \(n\in\left\{-9;3;-4;-2\right\}\)
a, \(\dfrac{n^2+5}{n+3}=\dfrac{n^2+3n-3n-9+14}{n+3}=\dfrac{\left(n+3\right).\left(n-3\right)+14}{n+3}\)
\(=\dfrac{\left(n+3\right)\left(n-3\right)}{n+3}+\dfrac{14}{n+3}=n-3+\dfrac{14}{n+3}\)
Để \(\dfrac{n^2+5}{n+3}\) đạt giá trị nguyên thì \(\dfrac{14}{n+3}\) đạt giá trị nguyên.
\(\Rightarrow n+3\inƯ\left(14\right)\)
\(\Rightarrow n+3\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-17;-10;-5;-4;-2;-1;4;11\right\}\)
mà \(n\in N\Rightarrow n\in\left\{4;11\right\}\)
Vậy......
Câu b,c tương tự
Chúc bạn học tốt!!!
\(6n+14⋮2n+2\Leftrightarrow6n+6+8⋮2n+2\)
\(\Leftrightarrow8⋮2n+2\) (do \(6n+6=3\left(2n+2\right)⋮2n+2\))
\(\Leftrightarrow4⋮n+1\)
\(\Rightarrow n+1=Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow n=\left\{0;1;3\right\}\)