Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Dễ thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow11x\ge0\Rightarrow x\ge0\)
Như vậy ta có thể biến đổi pt ban đầu như sau:
\(x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{110}\right)=11x\)
\(\Leftrightarrow10x+\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\right)=11x\)
\(\Leftrightarrow10x+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)=11x\)
\(\Leftrightarrow10x+\left(1-\dfrac{1}{11}\right)=11x\)\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\) (thỏa mãn)
Bài 2:
Gọi \(a,b,c\) là các chữ số của số có ba chữ số cần tìm
Không mất tính tổng quát giả sử \(a\le b\le c\le 9\)
Ta có: \(1\le a+b+c\le27\)
Mặt khác số cần tìm là bội của \(18\) nên là bội của \(9\)
Do đó \(a+b+c=9\) hoặc \(a+b+c=18\) hoặc \(a+b+c=27\)
Theo đề bài ta có: \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{6}\)
Vậy \(a+b+c⋮6\Rightarrow a+b+c=18\)
Từ đó ta tìm được \(a=3;b=6;c=9\)
Do số phải tìm là bội của \(18\) nên chữ số hàng đơn vị chẵn nên 2 số cần tìm là \(396;936\)
Bài 3:
Ta có nhận xét: Với \(x\ge0\Rightarrow\left|x\right|+x=2x\)
Với \(x< 0\Rightarrow\left|x\right|+x=0\). Do đó \(|x|+x\) luôn là số chẵn với \(\forall x\in Z\)
Áp dụng nhận xét trên thì \(|b-45|+b-45\) là số chẵn \(b\in Z\)
Suy ra \(2^a+37\) là số chẵn suy ra \(2^a\) lẻ suy ra \(a=0\)
Khi đó \(|b-45|+b-45=38\)
*)Nếu \(b<45\Rightarrow-(b-45)+b-45=38\Leftrightarrow 0=38\) (loại)
*)Nếu \(b\ge45\Rightarrow2\left(b-45\right)=38\Rightarrow b-45=19\Rightarrow b=64\) (thỏa mãn)
Vậy \(\left(a;b\right)=\left(0;64\right)\)
Câu 2:Thử 18 số,là các hoán vị của 123;246;369 xem số nào chia hết cho 18 thì chọn
Thay các giá trị Q(1) , Q(2) , Q(3) , Q(4) vào Q(x) được :
\(Q\left(1\right)=1+m+n+p+q=5\)
\(Q\left(2\right)=16+8m+4n+2p+q=7\)
\(Q\left(3\right)=81+27m+9n+3p+q=9\)
\(Q\left(4\right)=256+64m+16n+4p+q=11\)
Ta có hệ \(\begin{cases}m+n+p+q=4\\8m+4n+2p+q=-9\\27m+9n+3p+q=-72\\64m+16n+4p+q=-245\end{cases}\)
\(\Leftrightarrow\begin{cases}m=-10\\n=35\\p=-48\\q=27\end{cases}\)
Từ đó bạn thay vào tính Q(10) , Q(11) , Q(12) , Q(13) nhé ^^
Nhân hết ra rồi rút gọn thôi bạn:
\(A=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right).\)
\(=2^{32}-2^{30}+2^{28}-2^{26}+2^{23}-2^{19}+2^{18}-2^{16}+2^9\)\(+2^{30}-2^{28}+2^{26}-2^{24}+2^{21}-2^{17}+2^{16}-2^{14}+2^7+2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}\)\(+2^9-2^7+1\)
\(=2^{32}+\left(2^{23}+2^{23}-2^{24}\right)+\left(2^{18}-2^{17}-2^{17}\right)+\left(2^9+2^9-2^{10}\right)+1=2^{32}+1\)
\(A=\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}+\dfrac{1}{\left(x+9\right)\left(x+11\right)}\)\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}+\dfrac{1}{x+9}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{x+1}-\dfrac{1}{x+11}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11}{\left(x+1\right)\left(x+11\right)}-\dfrac{x+1}{\left(x+1\right)\left(x+11\right)}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{x+11-x-1}{\left(x+1\right)\left(x+11\right)}\right)=\dfrac{1}{2}.\dfrac{10}{\left(x+1\right)\left(x+11\right)}=\dfrac{10}{2\left(x+1\right)\left(x+11\right)}\)
\(\frac{10}{23}\) = 0,(4347826086956521739130)
Chu kì có 22 chữ số
2017 : 22 dư 15
Chữ số thập phân thứ 15 trong chu kì là 2
=> KQ: 2
ai trả lời nhanh câu này
nó kêu cứu ghê quá
Help me !!!!!!!!!!!!!! Pls