Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
(�+1)2�2[(�−1)2+1]=�2(n+1)2n2[(n−1)2+1]=y2
Muốn pt trên đúng thi (�−1)2+1(n−1)2+1cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
với n=1 thì x+y=z thì rất có nhiều x,y,z để tìm như 1+2=3,2+3=4,...
với n=2 thì các dạng 9k2+16k2=125k2 (k là số tự nhiên ) luôn xảy ra, còn nhiều dạng khác các bạn có thể tìm thêm
với n>2
nếu x2+y2=z2 suy ra (x/z)2+(y/z)2=1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra 1>(x/z)n+(y/z)n
suy ra xn+yn<zn (1)
nếu x2+y2<z2 suy ra
(x/z)2+(y/z)2<1 mà x,y,z nguyên dương nên x/z<1,y/z<1 nên (x/z)2>(x/z)n,(y/z)2>(y/z)n suy ra (x/z)2+(y/z)2>(x/z)n+(y/z)n
mà (x/z)2+(y/z)2<1suy ra 1>(x/z)n+(y/z)n suy ra xn+yn<zn (2)
còn trường hợp x2+y2>z2 mình chưa nghĩ ra nha
bạn thông cảm nhé
@minhnguvn
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
https://olm.vn/hoi-dap/question/997557.html
Mk làm rồi nhé : Ấn vào đây
\(4^n⋮4\)
Nếu n=0 thì:\(4^n=4^0=1\)=> không phải là hợp số
Ta có: n>1 =>4n là hợp số
\(n^4⋮n;n>1\)=>n4 là hợp số
Vậy n4+4n là hợp số
Ta có : \(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6+2n^3+1\right)-\left(n^4-2n^2+1\right)\)
\(=\left(n^3+1\right)^2-\left(n^2-1\right)^2\)
\(=\left(n^3+1-n^2+1\right)\left(n^3+1+n^2-1\right)\)
\(=n^2\left(n^3-n^2+2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Ta thấy \(n^2\left(n+1\right)^2\) là số chính phương (1) \(n^2-2n+2=\left(n-1\right)^2+1\)ko phải là số chính phương (2)
Từ (1);(2) => \(n^2\left(n+1\right)^2\left(n^2-2n+2\right)\) ko phải là số chính phương (đpcm)
Giả sử 2n - 1 là số chính phương => 2n - 1 có dạng 4k hoặc 4k + 1
+) Nếu 2n - 1 có dạng 4k => 2n có dạng 4k + 3. Vì 2n chia hết cho 2 mà 4k + 3 không chia hết cho 2 => mâu thuẫn => loại
+) Nếu 2n - 1 có dạng 4k + 1 => 2n có dạng 4k + 2. Vì n là số tự nhiên lớn hơn 1 => 2n luôn chia hết cho 4 mà 4k + 2 không chia hết cho 4 => mâu thuẫn => loại
Vậy 2n - 1 không phải số chính phương
Do n là số tự nhiên > 1 => 2n luôn chia hết cho 4
=> 2n - 1 chia 4 dư 3, không là số chính phương
Mk chưa hs chứng minh = phản chứng, đây là cách lp 6, hơi ngắn