Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(M< 1-\frac{1}{n}\)
Mà \(1-\frac{1}{n}< 1\)nên M < 1
Vậy ...
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow M=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}< 1\) (đpcm)
Bài 1::
a) 32<2n<128
=>25<2n<27
=>n=6
Bài 2:Ta có :
A = 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99
=> 1/2A = (1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100
1/2B- A = [(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)100+(1/2)100] - [ 1/2+(1/2)2+(1/2)3+...+ (1/2)98+(1/2)99+(1/2)99]
-1/2A = [(1-2)2-(1/2)2]+[(1/2)3-(1/2)3]+...+[(1/2)98-(1/2)98]+[(1/2)99-(1/2)99]+[(1/2)100+(1/2)100-(1/2)99] -1/2
-1/2A = 0+0+...+0+0+0-1/2
-1/2A = -1/2
=> A = 1
Ta có
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
\(=\frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{n}\right)< \frac{1}{4}.1=\frac{1}{4}\)
=> ĐPCM
Chứng minh quy nạp
1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*)
Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng)
Giả sử bất đẳng thức đúng với n = k
Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1)
Ta cần chứng minh bất đẳng thức đúng với n = k + 1
Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2)
<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24
Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3)
<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0
<=>1 / [2(2k + 1)(k + 1)] > 0 (4)
Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng
Cộng (1) và (3) được :
1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24
mình lớp 5 mong bạn thông cảm