Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
n + 3 chia hết choi n + 1
n + 1+ 2 chia hết cho n +1
2 chia hế cho n + 1
n + 1 thuộc U(2) = {-2 ; -1 ; 1 ; 2}
n + 1 = -2 =>? n = -3
n + 1= -1 => n = -2
n + 1 = 1 => n = 0
n + 1 = 2 => n = 1
Yễn Nguyễn ơi! Giúp mình với!!:
8-3n chia hết cho n+1.
Yễn Nguyễn có làm được ko?
1)[n-6-n+1]chia hết cho n -1
suy ra -5 chia hết cho n-1
đến đây tự giải nhé
các phần sau tương tự
nhớ bấm đúng cho mình nha
bạn ơi nk chưa hiểu rõ
hay kết bạn rùi giải rõ giùm mk nha
cảm ơn bạn rất nhiều
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
https://olm.vn/hoi-dap/detail/1317447057.html " VÀO ĐI MAN BÀI I HỆT YOU IK "
Vì cộng thêm 1 thì n chia hết cho 2, cộng thêm 2 thì n chia hết cho 3, cộng thêm 3 thì n chia hết cho 4, cộng thêm 4 thì n chia hết cho 5, cộng thêm 5 thì n chia hết cho 6, cộng thêm 6 thì n chia hết cho 7 nên ta có : n chia cho 2 dư 1, n chia cho 3 dư 2, n chia cho 4 dư 3, n chia cho 5 dư 4, n chia cho 6 dư 5 và n chia cho 7 dư 6
\(\Rightarrow\)n-1\(⋮\)2, n-2\(⋮\)3, n-3\(⋮\)4, n-4\(⋮\)5, n-5\(⋮\)6 và n-6\(⋮\)7
\(\Rightarrow\)n-1+2\(⋮\)2, n-2+3\(⋮\)3, n-3+4\(⋮\)4, n-4+5\(⋮\)5, n-5+6\(⋮\)6 và n-6+7\(⋮\)7
\(\Rightarrow\)n-1 chia hết cho cả 2,3,4,5,6,7
\(\Rightarrow\)n-1\(\in\)BC(2,3,4,5,6,7)
Ta có : 2=2
3=3
4=22
5=5
6=2.3
7=7
\(\Rightarrow\)BCNN(2,3,4,5,6,7)=22.3.5.7=420
\(\Rightarrow\)BC(2,3,4,5,6,7)=B(420)={0;420;840;1260;...}
Mà 1<n
n\(\in\){421;841;1261;...}
Vậy n\(\in\){421;841;1261;...}
Xét từng trường hợp
n là chẵn;n là lẻ
TH1:
n là chẵn
=>n+4 có tổng là chẵn và chia hết cho 2
TH2;
n là lẻ
=>n+5 có tổng là chẵn và chia hết cho 2.
Vậy (n+4)(n+5) chia hết cho 2.
Bài này mik làm ở phần cuối chương rồi !
- Nếu \(n+4⋮2\)
\(\Rightarrow n+4⋮2\left(n⋮2;4⋮2\right)\)
\(\Rightarrow\left(n+4\right)\left(n+5\right)⋮2\)
- Nếu \(n\) ko chia hết cho 2
\(\Rightarrow n:2\)dư 1
\(\Rightarrow n=2k+1\) ( với \(k\inℕ\) )
\(\Rightarrow n+5=2k+1+5=2k+6=2\left(k+3\right)⋮2\)
\(\Rightarrow\left(n+4\right)\left(n+5\right)⋮2\)
Vậy \(\left(n+4\right)\left(n+5\right)⋮2\)