Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n+3 là ước 2n+16
=> 2n+16 chia hết cho n+3
=>2(n+3)+10 chia hết cho n+3
Mà 2(n+3) chia hết cho n+3
=>10 chia hết cho n+3
=>n+3 thuộc Ư(10)={1;2;5;10;-1;-2;-5;-10}
=>n thuộc {-2;-1;2;7;-4;-5;-8;-13}
=> n thuộc {-13;-8;-5;-4;-2;-1;2;7}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 \(\in\) Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
Ta có: n + 9 là ước số của 4n + 22
=> 4n + 22 chia hết n + 9
<=> (4n + 36) - 14 chia hết n + 9
<=> 4.(n + 9) - 14 chia hết n + 9
=> 14 chia hết n + 9
=> n + 9 $\in$∈ Ư(14) = { - 1;1;-2;2;-3;3;-4;4;-7;7-14;14}
=> n= { tự tính hộ nhé}
c + 3 là ước số của -6
⇒ -6 ⋮ (c + 3)
⇔ (c + 3) ∈ Ư(-6).
Ta có: Ư(-6) = { 1; -1; 2; -2; 3; -3; 6; -6 }
Vậy: (c + 3) ∈ { 1; -1; 2; -2; 3; -3; 6; -6 }
⇔ c ∈ { -2; -4; -1; -5; 0; -6; 3; -9 }
<=>2(n+3)+13 chia hết n+3
=>13 chia hết n+3
=>n+3\(\in\){-13,-1,1,13}
=>n\(\in\){-16,-4,-2,11}
vì x \(\in\)Z => x \(\in\){-16,-4,-2}
vậy x \(\in\){-16,-4,-2}
n ∈ {-15; -3; 0; 1; 2; 4; 5; 6; 9; 21}