Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+....+2^{2015}+2^{2016}\)
Suy ra \(A=2^{2016}-1\)
Khi đó \(2^x.\left(2^{2016}-1\right)+1=2^{2016}\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^{2016}-1\)
\(\Rightarrow2^x=1\Rightarrow x=0\)
Vậy x=0
#Mon
N = 1 - 2 + 22 - 23 + ...+ 22016
\(\Rightarrow\)2N = 2 - 22 + 23 - 24 + ... + 22017
\(\Rightarrow\) N + 2N = (1 - 2 + 22 - 23 + ...+ 22016) + (2 - 22 + 23 - 24 + ... + 22017)
= 1 + 22017
\(\Rightarrow N=\frac{1+2^{2017}}{3}\)
\(A=\left(1+2\right).\frac{1}{2}+\left(1+2+3\right).\frac{1}{3}+...+\left(1+2+3+...+2016\right).\frac{1}{2016}\)
\(A=\left(1+2\right).2:2.\frac{1}{2}+\left(1+3\right).3:2.\frac{1}{3}+...+\left(1+2016\right).2016:2.\frac{1}{2016}\)
\(A=3:2+4:2+...+2017:2\)
\(A=3.\frac{1}{2}+4.\frac{1}{2}+...+2017.\frac{1}{2}\)
\(A=\frac{1}{2}.\left(3+4+...+2017\right)\)
\(A=\frac{1}{2}.\left(3+2017\right).2015:2\)
\(A=\frac{1}{2}.2020.2015.\frac{1}{2}\)
\(A=505.2015=1017575\)
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha