Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\left(x+1\right).2=9.3\)
\(\left(x+1\right).2=27\)
\(x+1=27:2\)
\(x+1=13,5\)
\(x=13,5-1=12,5\)
vậy x = 12.5
\(\frac{x+1}{3}=\frac{9}{2}\)
\(\Leftrightarrow2\left(x+1\right)=3\times9\)
\(\Leftrightarrow2\left(x+1\right)=27\)
\(\Leftrightarrow x+1=\frac{27}{2}\)
\(\Leftrightarrow x=\frac{25}{2}\)
Do những số hạng liên tiếp đều hơn kém nhau 2 nên ta có số số hạng là
\(\left(98-2\right):2+1=49\)
Tổng là
\(\left(98+2\right)\cdot49:2=2450\)
Từ 1 đến 2n+1 có: (2n+1-1):2+1=n+1(số hạng)
=>B=(1+2n+1).(n+1):2
=>B=(2n+2).(n+1):2
=>B=2.(n+1).(n+1):2
=>B=(n+1)2.2:2
=>B=(n+1)2
Vậy B là bình phương của n+1
P/s đề đúng là phải "chứng tỏ A là bình phương của 1 STN A= 1+3+5+.....+(2n-1) với n thuộc N"
\(TH1;n=3k\)\(\Rightarrow10^n+18n-1=\)\(10^{3k}+18.3k-1=1000^k+54k-1\equiv1+54k-1\left(mod27\right)\equiv0\left(mod27\right)\left(1\right)\)
\(TH2;n=3k+1\Rightarrow10^n+18n-1=10^{3k+1}+18.\left(3k+1\right)-1\)\(=10^{3k}.10+18.\left(3k+1\right)-1=1000^k.10+54k+18-1\)\(\equiv1.10+54k+17\left(mod27\right)\equiv54k+27\left(mod27\right)\equiv0\left(mod27\right)\left(2\right)\)
\(TH3;n=3k+2\Rightarrow10^n+18n-1=10^{3k+2}+54k+36-1\)\(=1000^{3k}.100+54k+35\equiv1.100+54k+35\left(mod27\right)\)\(\equiv54k+135\left(mod27\right)\equiv0\left(mod27\right)\left(3\right)\)\(Từ\left(1\right);\left(2\right);\left(3\right)\Rightarrow10^n+18n-1⋮27,\forall n\in N\left(ĐPCM\right)\)
( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... ( x + 100 ) = 5750
Số số hạng = số x trong dãy là : ( 100 - 1 ) : 1 + 1 = 100 số
Tổng là : ( 100 + 1 ) x 100 : 2 = 5050
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
\(\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{100.103}\)
\(=\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{100}-\frac{1}{103}\)
\(=\frac{1}{7}-\frac{1}{103}\)
\(=\frac{96}{721}\)
\(\frac{2}{7.10}+\frac{2}{10.13}+...+\frac{2}{100.103}\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{2}{3}\left(\frac{1}{7}-\frac{1}{103}\right)\)
\(=\frac{2}{3}.\frac{96}{721}\)
\(=\frac{64}{721}\)
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
Để n + 4 chia hết cho n - 10
<=> (n-10)+14 chia hết cho n - 10
<=> 14 chia hết cho n - 10
<=> \(n-10\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng:
Vậy x = {11;9;12;8;17;3;24;-4}
Để n+4 chia hết cho n-10 => (n-10+14) chia hết cho (n-10)
Mà n-10 chia hết cho n-10 => 14 chia hết cho n-10 Hay (n-10) thuộc Ư(14)
Bạn tự giải tiếp nk