K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2015

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : \(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

hay \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\)(vì x+y >0) (*)

Ta lại có \(\left(x+y\right)^2\ge4xy\)(**)

Từ (*) và (**) => \(x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

7 tháng 5 2015

Ta có 1 = x+y+z = (x+y) +z

Áp dụng bđt Cauchy với 2 số dương x+y và z ta đc : $1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z$1=(x+y)+z≥2√(x+y)z⇒12≥4(x+y)z

hay $1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z$1≥4(x+y)z⇒x+y≥4(x+y)2z(vì x+y >0) (*)

Ta lại có $\left(x+y\right)^2\ge4xy$(x+y)2≥4xy(**)

Từ (*) và (**) => $x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16$x+y≥16xyz⇒x+yxyz ‍≥16

Dấu = xảy ra <=> x = y ; x+y+z =1 và (x+y)/xyz = 16

Giải hệ này ta đc x = y = 1/4 và z = 1/2

9 tháng 1 2018

Bài này dễ mà:

Áp dụng BĐT Cô-si:

\(\left(x+y+z\right)^3\ge27xyz\)

\(\Rightarrow\)\(xyz\le\dfrac{1}{27}\)

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{\left(x+y+y+z+z+x\right)^3}{27}\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\dfrac{8}{27}\)

\(\Rightarrow\)A\(\le\dfrac{8}{729}\)

Dấu ''='' xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

24 tháng 9 2020

tìm x không âm biết

a) √x=√2 b) √x=-2

mọi người giải nhanh bài toán này cho mik với ạ

AH
Akai Haruma
Giáo viên
15 tháng 8 2018

Lời giải:

Ta có:

\(S=xyz(x+y)(y+z)(z+x)=(xz+yz)(xy+xz)(yz+xy)\)

Áp dụng BĐT AM-GM có:

\((xz+yz)(xy+xz)(yz+xy)\leq \left(\frac{xz+yz+xy+xz+yz+xy}{3}\right)^3\)

\(=\left(\frac{2(xy+yz+xz)}{3}\right)^3\)

Theo hệ quả quen thuộc của BĐT AM-GM:

\((x+y+z)^2\geq 3(xy+yz+xz)\Rightarrow xy+yz+xz\leq \frac{1}{3}\)

Do đó:

\(S\leq \left[\frac{2(xy+yz+xz)}{3}\right]^3\leq \left(\frac{2.\frac{1}{3}}{3}\right)^3=\frac{8}{729}\)

Vậy \(S_{\max}=\frac{8}{729}\Leftrightarrow x=y=z=\frac{1}{3}\)

13 tháng 5 2017

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1