Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lỡ tay bấm -_-; tiếp
F = \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2+\frac{1}{8}\)
Để F nhỏ nhất thì \(-\left(\sqrt{2}.y-\frac{1}{8}\right)^2\)nhỏ nhất=>\(\left(\sqrt{2}.y-\frac{1}{8}\right)^2=0\)
=> GTNN của F là 1/8 vs y= \(\frac{\sqrt{2}}{16}\)
bạn không cho \(x,y\)như thế nào thì tính sao được . Xem lại đề đi
\(M=x^2+y^2-xy-2x-2y+2\)
\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)
\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)
"=" khi x=y=2
Vậy Min M là -2 khi x=y=2
\(M=x^2+y^2-xy-2x-2y+2\)
\(4M=4x^2+4y^2-4xy-8x-8y+8\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)
\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)
\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)
\(\Rightarrow4M\ge-8\)
\(\Leftrightarrow M\ge-2\)
Dấu "=" xảy ra khi :
Rút gọn :
b ) \(\frac{x^2+3xy+2y^2}{x^2+2x^2y-xy^2-2y^2}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^3-xy^2+2x^2y-2y^3}\)
\(=\frac{x\left(x+4\right)+2y\left(x+y\right)}{x\left(x^2-y^2\right)+2y\left(x^2-y^2\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+y\right)\left(x+2y\right)}{\left(x-y\right)\left(x+y\right)\left(x+2y\right)}\)
\(=\frac{1}{x-y}\)
a: \(M=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=7^3+2\cdot49=441\)
b: \(A=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2\cdot7+37\)
\(=49+14+37=100\)
Đề bài bạn kìa
tìm GTNN nha m.n