Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{A}{B}=\dfrac{2x^4+4x^3-x^3-2x^2-2x^2-4x+x+2}{x+2}\)
\(=2x^3-x^2-2x+1\)
khi a/b=c hay a=c*b với c có thể là một số,đơn thức , đa thức
Da thuc A chia cho da thuc B khi phep chia do co so du bang 0. ( R=0)
Khi A : B = C hay A = C*B với C có thể là một số, đơn thức, đa thức
Nhiều cách. Có thể trực tiếp chia, hoặc gán cho x 1 số giá trị nào đó, áp dụng định lý Bê-du , ...
uầy... nhiều cái bạn nói hình như tớ còn chưa học nốt :p
Hạng tử y 6 của đa thức A không chia hết cho đơn thức B = 2x.
Do đó, đa thức A không chia hết cho đơn thức B
Chọn đáp án A
a) Ta có: a+b+c+d=0
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0
Vậy x=1 là một nghiệm của f(x)
b) Ta có: a+c=b+d => -a+b-c+d=0
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0
Vậy x=-1 là một nghiệm của f(x)
1. Qui tắc
Muốn chia đa thức AA cho đơn thức BB (trường hợp các hạng tử của đa thức AA đều chia hết cho đơn thức BB), ta chia mỗi hạng tử của AA cho BB rồi cộng các kết quả với nhau.
2. Chú ý
Trường hợp đa thức AA có thể phân tích thành nhân tử, thường ta phân tích trước để rút gọn cho nhanh.
Ta trình bày phép chia tương tự như cách chia các số tự nhiên. Với hai đa thức A và B của một biến, B ≠0 tồn tại duy nhất hai đa thức Q và R sao cho:
A = B . Q + R, với R = 0 hoặc bậc bé hơn bậc của 1
Nếu R = 0, ta được phép chia hết.
Nếu R ≠0, ta được phép chia có dư.