K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 9 2021

Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)

\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)

\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)

\(\Rightarrow y=2x+3\)

\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy

NV
31 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{1}{2}\left(x+y+x+z\right)=\dfrac{1}{2}\left(2x+y+z\right)\)

Tương tự: \(\sqrt{2y+xz}\le\dfrac{1}{2}\left(x+2y+z\right)\) ; \(\sqrt{2z+xy}\le\dfrac{1}{2}\left(x+y+2z\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(4x+4y+4z\right)=4\)

\(P_{max}=4\) khi \(x=y=z=\dfrac{2}{3}\)

31 tháng 12 2021

P = \(1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)

\(=\sqrt{3.\left(4+xy+yz+zx\right)}\)

Đã biết x2 + y2 + z2 \(\ge\)xy + yz + zx

=> xy + yz + zx \(\le\dfrac{\left(x+y+z\right)^2}{3}\)

Khi đó \(P\le\sqrt{3\left(4+xy+yz+zx\right)}\le\sqrt{3\left[4+\dfrac{\left(x+y+z\right)^2}{3}\right]}\)

= 4 

Dấu "=" xảy ra <=> x = 2/3 

30 tháng 12 2021

\(\sqrt{2x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\le\dfrac{x+2y+z}{2}\\ \Leftrightarrow P=\sum\sqrt{2x+yz}\le\dfrac{x+2y+z+2x+y+z+x+y+2z}{2}=\dfrac{4\left(x+y+z\right)}{2}=2\cdot2=4\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{2}{3}\)

30 tháng 12 2021

Anh ơi! Anh làm theo cách bình thường giúp em với nhá! 

7 tháng 8 2020

Sử dụng bất đẳng thức AM - GM cho 2 số ta có được:

\(\sqrt{xy+2x+2y+4}=\sqrt{\left(x+2\right)\left(y+2\right)}\le\frac{x+2+y+2}{2}\)

\(\sqrt{\left(2x+2\right)y}=\sqrt{\left(x+1\right)\cdot2y}\le\frac{x+1+2y}{2}\)

Khi đó:

\(LHS\le\frac{x+2+y+2}{2}+\frac{x+1+2y}{2}=\frac{2x+3y+5}{2}=\frac{10}{2}=5\)

Đẳng thức xảy ra tại x=y=1

NV
8 tháng 12 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)

\(xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\)

\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)^2+\sqrt{x}-\sqrt{y-1}=0\)

\(\Leftrightarrow\left(y-1\right)\left(x-y+1\right)+\dfrac{x-y+1}{\sqrt{x}+\sqrt{y-1}}=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(y-1+\dfrac{1}{\sqrt{x}+\sqrt{y-1}}\right)=0\)

\(\Leftrightarrow x-y+1=0\)

\(\Rightarrow y=x+1\)

Thay xuống pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+\left(7-x-3\sqrt{5-x}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow...\)

8 tháng 3 2019

\(\Rightarrow \sqrt{y-1}-\sqrt{x}+(y-1)^{2}-x^{2}+y(y-x-1)=0\)

\(\Leftrightarrow (y-x-1)\left ( \underset{>0,x\geq 0 \& 6\geq y\geq 1}{\underbrace{\frac{1}{\sqrt{y-1}+x}+2y+x-1}} \right )=0\Rightarrow y-x-1=0\Leftrightarrow x=y-1\; \;\)\(3\sqrt{6-y}+3\sqrt{5y-9}=2y+5\;\)

\(\Leftrightarrow (8-y)-3\sqrt{6-y}+3(y-1-\sqrt{5y-9})=0\)

\(\Leftrightarrow \frac{y^{2}-7y+10}{(8-y)+3\sqrt{6-y}}+3.\frac{y^{2}-7y+10}{y-1+\sqrt{5y-9}}=0\)

\(\Leftrightarrow (y^{2}-7y+10)(\underset{>0,\forall \frac{9}{5}\leq y\leq 6}{\underbrace{{\frac{1}{(8-y)+3\sqrt{6-y}}+\frac{3}{y-1+\sqrt{5y-9}}}}})=0\)