Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)
ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
a/ ĐKXĐ: ...
\(\Leftrightarrow\frac{4x+3}{x+1}=9\Leftrightarrow4x+3=9\left(x+1\right)\)
\(\Leftrightarrow5x=-6\Rightarrow x=-\frac{6}{5}\)
b/ ĐKXĐ: \(x\ge0\)
Nhân cả tử và mẫu của từng số hạng với biểu thức liên hợp và rút gọn ra được:
\(\sqrt{x+5}-\sqrt{x+4}+\sqrt{x+4}-\sqrt{x+3}+...+\sqrt{x+1}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+5}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+5}=1+\sqrt{x}\)
\(\Leftrightarrow x+5=x+1+2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)
c/ \(\Leftrightarrow2xy-6x-5y+15=33\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Đến đây là pt ước số đơn giản rồi
\(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)(ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x}+3}{2-\sqrt{x}}\)
\(A=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-9}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(A< 0\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-3}< 0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+1< 0\\\sqrt{x}-3< 0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< 1\\x< 9\end{cases}}\)
Vậy với \(x< 1\)thì \(A\)nhận giá trị âm.
Nhưng \(x< 1\) lại không thỏa mãn ĐKXĐ của A
Vậy thì các giá trị của x để A nhận giá trị âm phải là \(0\le x< 9\)và x khác 4
Bạn sửa đi nhé !
\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
\(P=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(P=\left(\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(P=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-5x\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(P=\frac{4\sqrt{x}\left(2+5x\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(P=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(P=\frac{-4x}{3-\sqrt{x}}\)
\(P=\frac{4x}{\sqrt{x}-3}\)
Có:
\(m\left(\sqrt{x}-3\right)P>x+1\)
\(\Leftrightarrow m\left(\sqrt{x}-3\right).\frac{4x}{\sqrt{x}-3}>x+1\)
\(\Leftrightarrow4mx>x+1\)
\(\Leftrightarrow4mx-x>1\)
\(\Leftrightarrow\left(4m-1\right)x>1\)
\(\Leftrightarrow x>\frac{1}{4m-1}\)
Lại có:
\(x>9\)
\(\Rightarrow\frac{1}{4m-1}< 9\)
\(\Leftrightarrow1< 9\left(4m-1\right)\)
\(\Leftrightarrow1< 36m-1\)
\(\Leftrightarrow10< 36m\)
\(\Leftrightarrow m< \frac{5}{18}\)
thỏa mãn j vậy bạn
#mã mã#