Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p}\)
\(p_1=m_1v_1=1\cdot100=100kg.m\)/s
\(p=\left(m_1+m_2\right)\cdot V=\left(1+3\right)\cdot200=800kg.m\)/s
Động lượng mảnh thứ hai:
\(p_2=p-p_1=800-100=700kg.m\)/s
Vận tốc mảnh nhỏ:
\(v_2=\dfrac{p_2}{m_2}=\dfrac{700}{3}=233,33\)m/s
Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.
Theo định luật bảo toàn động lượng: p → = p → 1 + p → 2
+ Với p = m v = 2.250 = 500 k g . m / s p 1 = m 1 v 1 = 1.500 = 500 k g . m / s p 2 = m 2 v 2 = v 2 k g . m / s
+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p → theo pitago
⇒ p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2 k g m / s
+ Mà sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0
Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc 45 ° với vận tốc 500 2 m / s (m/s)
Chọn đáp án A
Xét hệ gồm 2 mảnh đạn trong thời gian nổ, đây là hệ kín nên ta áp dụng định luật bảo toàn động lượng: \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p_h}\)
Trong đó: \(p_h=mv=195\left(kg.m/s\right)\)
\(p_1=m_1v_1=90\sqrt{3}\left(kg.m/s\right)\)
Áp dụng định lý hàm cos: \(p_2=\sqrt{p_1^2+p_h^2-2p_1p_h\cos\left(60^0\right)}\) => v2=p2/m2 =..... tự tính
Gọi \(\beta\) là góc hợp bởi phương ngang và mảnh thứ 2 ta có: \(\cos\beta=\dfrac{p_h^2+p_1^2-p_2^2}{2p_hp_1}=.......\) tự tính nốt :D
bài này đã cho bạn cái sườn hồi tối rồi :D xin phép giải vắn tắt nhất
\(p_2=\sqrt{p^2+p_1^2-2.p.p_1.\cos\left(45^0\right)}\) \(=\sqrt{\left(mv\right)^2+\left(m1v1\right)^2-2mv\left(m1v1\right)\dfrac{\sqrt{2}}{2}}\)
\(\Rightarrow p_2=m_2v_2\simeq999,14\left(kg.m/s\right)\)\(\Rightarrow v_2=\dfrac{p_2}{m_2}\simeq999,14\left(m/s\right)\) :D
\(\cos\beta=\dfrac{p_2^2+p^2-p_1^2}{2p_2p}\) thay số nốt :D
mọi thắc mắc truy cập:
https://hoc24.vn/cau-hoi/mot-vien-dan-co-khoi-luong-3kg-bay-len-theo-phuong-thang-dung-voi-v-471ms-thino-thanh-2-manh-manh-1-co-khoi-luong-3kg-van-toc-overrightarrowv-1-chech-theo-phuong-thang-dung-1-goc-450-voi-d.334563063787
0
Bình chọn giảm
Xét hệ là viên đạn. VÌ thời gan nổ là rất ngắn và trong thời gian nổ, nội lực rất lớn so với ngoại lực (trọng lực của đạn) nên hệ có thể coi là kín. Theo định luật bảo toàn động lượng ta có:
p⃗ =p1→+p2→⇔mv⃗ =m1v1→+m2v2→p→=p1→+p2→⇔mv→=m1v1→+m2v2→
Các vecto vận tốc như hình bên.
Về độ lớn ta có:
p=mv=200.2=400kg.m/sp=mv=200.2=400kg.m/s
p1=m1v1=1,5.200=300kg.m/sp1=m1v1=1,5.200=300kg.m/s
p2=p2+p21−−−−−−√=4002+3002−−−−−−−−−−√=500kg.m/sp2=p2+p12=4002+3002=500kg.m/s
Khối lượng mảnh thứ hai: m2=m−m1=0,5kgm2=m−m1=0,5kg
Vận tốc của mảnh thứ hai v2=p2m2=5000,5=1000m/sv2=p2m2=5000,5=1000m/s. Vận tốc v2→v2→ hợp với phương ngang một góc αα. Với tanα=p1p=34⇒α=370
Vì \(p=400kg.m\text{/}s\) và \(p_1=300kg.m\text{/}s\), nên suy ra:
\(p_2=500kg.m\text{/}s\) và \(v_2=1000m\text{/}s\)
\(\tan\alpha=\frac{300}{400}=\frac{3}{4}\Rightarrow\alpha=37^o\)