K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

Khoảng cách từ ảnh đến thấu kính là:

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)

Chiều cao của ảnh:

Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)

20 tháng 3 2024

i đâu ra vậy bn

15 tháng 3 2021

A B O F F' A' B'

b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật

c) ΔOAB∞ΔOA'B'

\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\)  1

ΔOFI∞ΔFA'B'

\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)

\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\)   2

Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)

⇔1(3-OA') = 3. OA'

⇔3- 3.OA' = 3.OA'

⇔-3.OA' -3. OA' = -3

⇔-6.OA' = -3

⇔OA' = -9

Thay OA'= -9 vào 1

\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)

25 tháng 1

đặc điểm: ảnh thu được trên màn, ngược chiều và lớn hơn vật

25 tháng 1

△OAB ∼ △OA'B' (g-g) \(=>\dfrac{OA}{OA'}=\dfrac{AB}{A'B'}=>\dfrac{d}{d'}=\dfrac{h}{h'}\left(1\right)\)

△FOI ∼ △FA'B' (g-g) \(=>\dfrac{OF}{FA'}=\dfrac{OI}{A'B'}\)

mà FA'  = OA' - OF; OI = AB

\(=>\dfrac{OF}{OA'-OF}=\dfrac{AB}{A'B'}=>\dfrac{f}{d'-f}=\dfrac{h}{h'}\left(2\right)\)

từ (1)(2) \(=>\dfrac{d}{d'}=\dfrac{f}{d'-f}=>dd'-df=d'f\)

\(=>dd'-d'f=df=>d'\cdot\left(d-f\right)=df\\ =>d'=\dfrac{df}{d-f}=\dfrac{24\cdot16}{24-16}=48\left(cm\right)\left(3\right)\)

thay (3) vào (1) ta được: \(\dfrac{24}{48}=\dfrac{2}{h'}\)

\(=>h'=\dfrac{2\cdot48}{24}=4\left(cm\right)\)

vậy khoảng cách từ ảnh đến thấu kính là 48 cm; chiều cao ảnh là 4cm

 

6 tháng 11 2024

=con cu:))

16 tháng 3 2022

Ảnh ảo, cùng chiều và nhỏ hơn vật.

Khoảng cách từ ảnh đến thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{8}\Rightarrow d'=4,8cm\)

Chiều cao ảnh:

\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{2}{h'}=\dfrac{8}{4,8}\Rightarrow h'=1,2cm\)

Khoảng cách từ vật đến ảnh:

\(d-d'=8-4,8=3,2cm\)