K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2023

a/  bạn tự làm nhé

b/ Ta có: d < f: ảnh ảo, cùng chiều, lớn hơn vật

c/ Khoảng cách từ ảnh đến thấu kính là:

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)

\(\Leftrightarrow\dfrac{1}{16}=\dfrac{1}{12}+\dfrac{1}{d'}\)

\(\Leftrightarrow d'=-48\left(cm\right)\)

d) Chiều cao của ảnh

Ta có: \(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow h'=\dfrac{h.d'}{d}=\dfrac{2.-48}{12}=-8\left(cm\right)\)

8 tháng 5 2023

Tiêu cự là bao nhiêu vậy bạn

8 tháng 5 2023

Khoảng cách từ ảnh đến thấu kính là:

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{8.4}{8-4}=8\left(cm\right)\)

Chiều cao của ảnh:

Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow h'=\dfrac{d'.h}{d}=\dfrac{8.2}{8}=2\left(cm\right)\)

20 tháng 3 2024

i đâu ra vậy bn

16 tháng 3 2023

\(\left(1\right)\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{A'B'}\) ( do \(OI=AB\) )

 mik nhầm á bạn

16 tháng 3 2023

a. Bạn tự vẽ ( ảnh ảo )

b. Xét tam giác \(OAB\sim\) tam giác \(OA'B'\)

\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}=\dfrac{OI}{OA'}\)  ( do OI = OA )   (1)

Xét tam giác \(OIF'\sim\) tam giác \(A'B'F'\)

\(\dfrac{OI}{A'B'}=\dfrac{OF'}{A'F'}\)  (2)

\(\left(1\right);\left(2\right)\Rightarrow\dfrac{OA}{OA'}=\dfrac{OF'}{A'F'}=\dfrac{OF'}{OA'+OF'}\)
             \(\Leftrightarrow\dfrac{5}{OA'}=\dfrac{8}{OA'+8}\)

             \(\Leftrightarrow OA'=\dfrac{40}{3}\left(cm\right)\)

Thế \(OA'=\dfrac{40}{3}\) vào \(\left(1\right)\Leftrightarrow\dfrac{2}{A'B'}=5:\dfrac{40}{3}\)

                                    \(\Leftrightarrow A'B'=\dfrac{16}{3}\left(cm\right)\)

1 tháng 4 2021

đề thiếu bạn ơi

4 tháng 5 2023

Áp dụng công thức tính thấu kính:

\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\)

\(\Rightarrow d'=\dfrac{d.f}{d-f}=\dfrac{9.3}{9-3}=4,5\left(cm\right)\)

Khoảng cách từ ảnh đến thấu kính là 4,5(cm)

Vậy khoảng cách từ ảnh đến vật là:

\(\Rightarrow d'+d=4,5+9=13,5\left(cm\right)\)