Một vật nhỏ đang dao động điều hòa dọc theo trục Ox (O là vị trí cân bằng) với biên độ A, với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Chọn đáp án C, D

Bất kể vật xuất phát từ vị trí nào thì quãng đường mà vật đi được trong khoảng thời gian T 2  luôn luôn là 2A.

Quãng đường tối đa và tối thiểu vật đi được trong thời T 4  lần lượt là:

Δ φ = 2 π T . T 4 = π 2 S max = 2 A sin Δ φ 2 = A 2 ≈ 1 , 4 A S min = 2 A 1 − cos Δ φ 2 = A 2 − 2 ≈ 0 , 6 A ⇒ 0 , 6 A < S < 1 , 4 A

30 tháng 9 2015

Biểu diễn dao động điều hòa bằng véc tơ quay, trong thời gian T/4, véc tơ quay một góc 360/4 = 900.

Quãng đường lớn nhất khi vật có tốc độ trung bình lớn nhất --> vật chuyển động quanh VTCB từ góc 450trái đến 450 phải.

A -A 45 45 M N

\(S_{max}=MN=2.A\cos45^0=A\sqrt{2}\)

30 tháng 9 2015

Chọn D

25 tháng 6 2016

x=Acos(\(\omega t+\varphi\))

Tại thời điểm t=0, ta có:

\(\frac{A}{2}=Acos\left(\varphi\right)\) \(\Rightarrow\)\(\varphi=-\frac{\pi}{6}\)(do vật chuyển động theo chiều dương)

\(\Rightarrow\) \(x=Acos\left(\omega t-\frac{\pi}{6}\right)\)

 

11 tháng 4 2020

cái này mình tưởng phải bằng: x=Acos(\(\omega t+\frac{\pi}{3}\)) chứ.

23 tháng 8 2016
W = \frac{1}{2}m \omega ^2 A^2 = \frac{1}{2}m \omega ^2 x^2 + \frac{1}{2}mv^2
Khi qua VTCB x = 0 \Rightarrow W = \frac{1}{2}mv^2
Đáp án đúng: C
23 tháng 8 2016

Khi vật qua VTCB \Rightarrow 
v_{Max} = \omega A = 1 (cm/s)
a_{Max} = \omega^2 A = 1,57 \approx \frac{\pi}{2} (cm/s^2)
\frac{a_{Max}}{v_{Max}} = \frac{\omega ^2 A}{\omega A} = \omega = \frac{\pi}{2} (rad/s)
\Rightarrow T = \frac{2 \pi}{\omega } = 4 (s)

30 tháng 9 2015

Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)

\(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)

+ A = 4cm.

+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)

Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)

 
12 tháng 7 2023

Làm sao để từ hệ ptr 1 suy ra đc hệ ptr 2 ạ

29 tháng 8 2015

Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)

+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)

+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)

t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.

\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)

29 tháng 5 2018

Giải thích chỗ cách tính Biên độ A cho em với ạ

28 tháng 7 2016

Tần số góc: \(\omega=\sqrt{\frac{K}{m}}=10\pi\left(rad\text{/}s\right)\)
Biên độ dao động của vật \(A=\sqrt{x^2+\left(\frac{v}{w}\right)^2}=6\left(cm\right)\)
Lò xo có độ nén cực đại tại biên âm:
\(\Rightarrow\)  Góc quét \(=\pi\text{/}3+\pi=\omega t\Rightarrow t=2\text{/}15\left(s\right)\)

chọn B

O
ongtho
Giáo viên
5 tháng 10 2015

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow v=\omega\sqrt{A^2-x^2} = \frac{2\pi}{T}\sqrt{A^2-(\frac{A}{2})^2} = \frac{\sqrt{3} \pi A}{T} \)

30 tháng 9 2015

Biên độ: A = 16/4 = 4cm.

Biểu diễn dao động điều hòa bằng véc tơ quay. Khi vật đi từ x1 đến x2 thì véc tơ quay một góc là:

\(30+60=90^0\)

Thời gian tương ứng: \(\frac{90}{360}T=\frac{1}{4}.0,4=0,1s\)

Tốc độ trung bình: \(v_{TB}=\frac{S}{t}=\frac{2+2\sqrt{3}}{0,1}=54,64\)(cm/s)

30 tháng 9 2015

Chọn B