Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử M và N là 2 vị trí của chất điểm ở thười điểm t1 và t2.Dễ thấy t2 hơn t1 \(1/4\) chu kì nên \(\widehat{MON}=90^o\Rightarrow\widehat{AOM}+\widehat{A'ON}=90^o\)
Ta có:\(\cos^2\widehat{AOM}+\cos^2\widehat{A'ON}=cos^2\widehat{AOM}+sin^2\widehat{AOM}=1\)
\(\Rightarrow\dfrac{x_1^2}{A^2}+\dfrac{x_2^2}{A^2}=1\). Kết hợp với \(A^2=x_1^2+\dfrac{v_1^2}{\omega^2}=x_2^2+\dfrac{v_2^2}{\omega^2}\)
\(\Rightarrow x_1^2=\dfrac{v_2^2}{\omega^2}\Rightarrow v_2=\left|x_1\right|.\dfrac{2\pi}{T}=4\pi\)(\(cm/s\))
Do chọn \(OA\equiv Ox\) làm chiều dương nên \(v_2\) sẽ dương
Gọi phương trình dao động là: \(x=A\cos\omega t\)
PT vận tốc là: \(v=x'=-\omega A\sin\omega t\)
Ta có: \(A\cos\omega t_0=2\)
Cần tìm:
\(v=-\omega A\sin\omega (t_0+0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{2\pi}{2}.0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{\pi}{2})\)
\(=-\dfrac{2\pi}{2} A\cos\omega t_0\)
\(=-\dfrac{2\pi}{2}.2=-2\pi(cm/s)\)
Chọn D
Để tính vị trí của vật điều hoà tại thời điểm 1/3 giây sau khi vật có li độ x = 3cm, chúng ta cần tính giá trị của x tại thời điểm đó.
Phương trình vật dao động điều hoà đã cho là: x = 6cos(2πt - π/6) (cm)
Để tìm thời điểm 1/3s tiếp theo, ta thay t = 1/3 vào phương trình trên:
x = 6cos(2π(1/3) - π/6) = 6cos(2π/3 - π/6) = 6cos(π/2) = 6 * 0 = 0 (cm)
Vậy, tại thời điểm 1/3s tiếp theo, vật sẽ ở li độ x = 0cm.
Trong 2s, vật quay được góc: \(\varphi=\omega t=2\pi\left(rad\right)\)
Có nghĩa là vật sẽ quay một vòng rồi về chính vị trí ban đầu. Tức là ban đầu vật có li độ x=4, tại thời điểm t+2(s), vật cũng có li độ x=4
Nửa chu kỳ vật đi được quãng đường S=2A=10\(\Rightarrow A=5\left(cm\right)\)
Dùng công thức độc lập:
\(A^2=x^2+\frac{v^2}{\omega^2}\Leftrightarrow5^2=3^2+\frac{\left(16\pi\right)^2}{\omega^2}\Rightarrow\omega=4\pi\\ \Rightarrow T=\frac{1}{2}\left(s\right)\)
S=10 =>A=5
A2=x2 +v2/ω2 =>ω2=v2/(A2-x2) =>ω=4π
=>T=2π/ω=2π/4π=1/2=0,5s
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
Ta có: \(x=2,5\sqrt{2}=\dfrac{A\sqrt{2}}{2}\) và đang có xu hướng giảm.
Lúc này vật ở thời điểm: \(t_1=\dfrac{T}{8}\)
Tại thời điểm: \(t=\dfrac{7}{48}s=\dfrac{7T}{14}=\dfrac{T}{8}+\dfrac{T}{6}\)
Dựa vào vòng tròn lượng giác \(\Rightarrow x=2,5cm\)
\(\omega=2\pi/T=\pi(rad/s)\)
Giả sử PT dao động là: \(x=A\cos(\pi t)(cm)\)
Suy ra: \(v=-\pi.A\sin(\pi t)\)
Tại thời điểm t ta có: \(A\cos(\pi t)=2\)
Tại thời điểm t + 0,5s thì vận tốc là:
\(v=-\pi.A\sin[\pi(t+0,5)]=-\pi.A\sin(\pi t +0,5\pi)\)
\(\Rightarrow v = -\pi.A\cos(\pi t)=-\pi.2=-2\pi(cm/s)\)
Chọn đáp án D.