Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lực kéo về: \(F = -kx= -k.A.\cos \omega t\)
Động năng và thế năng biến thiên điều hòa theo thời gian với tần số f thì li độ của vật biến thiên với tần số \(\frac{f}{2}\)
Do F kéo về tỉ lệ với li độ x của vật nên cũng biến thiên điều hòa với tần số \(\frac{f}{2}\).
Chọn đáp án.B.
Trong dao động điều hoà, động năng và thế năng biến đổi tuần hoàn với tần số gấp đôi tần số dao động.
Chọn B.
Tỉ số cơ năng
\(\frac{W_1}{W_2}=\frac{k_1A_1^2}{k_2A_2^2}=\frac{m_1\omega_1^2A_1^2}{m_2\omega_2^2A_2^2}=\frac{50.\left(5\pi\right)^21^2}{100.\pi^2.5^2}=\frac{1}{2}\)
Cơ năng: \(W=\frac{1}{2}kA^2=\frac{1}{2}m\omega^2A^2\)
Suy ra: \(\frac{W_1}{W_2}=\frac{m_1\omega_1^2A_1^2}{m_2\omega_2^2A_2^2}=\frac{0,05.\left(5\pi\right)^2.0,01^2}{0,1.\left(\pi\right)^2.0,05^2}=\frac{1}{2}\)
Đáp án A
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
a/ Ủa câu 1 ko nói rõ là tính thế năng ở vị trí nào ạ? Vậy em tính tại VTCB nhé :v
Tại vị trí cân bằng thì động năng lớn nhất, do li độ của vật bằng 0
\(W_t=W_d=\frac{1}{2}mv_{max}^2\)
\(v_{max}=\omega A\Rightarrow W_t=\frac{1}{2}m\omega^2A^2=...\)
2/ Thế năng biến thiên tuần hoàn heo thời gian với tần số là \(2f\)\(\Rightarrow2f=2.\frac{\omega}{2\pi}=\frac{2\pi f}{\pi}=f\Rightarrow B\)
3/ Động năng biến thiên tuần hoàn theo thời gian với tần số góc là \(2\omega\)
=> C
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)
+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)
+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)
t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.
\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)
Chu kì dao động: \(T=\frac{2\pi}{\omega}=0,5s\)
Trong dao động điều hòa, động năng và thế năng biến thiên tuần hoàn với chu kì bằng 1/2 chu kì dao động.
\(\Rightarrow T'=\frac{0,5}{2}=0,25s\)
Động năng và thế năng biến thiên với tân số \(f' = 2f\) bạn nhé.
Giải thích như sau:
\(W_{dongnang} = \frac{1}{2} mv^2 = \frac{1}{2}m.A^2 \omega^2 sin^2 (\omega t+\varphi)= \frac{A^2 \omega^2m}{2} \frac{1-\cos(2\omega t + 2 \varphi)}{2}= A_{dongnang}.\cos (2 \omega t - \varphi')+const.\) Dựa và phân tích trên thấy rằng động năng có tấn số góc mới là \(2 \omega\) tương ứng với tấn số \(f' = 2f\). Thế năng cũng tương tự.
Chọn đáp án.D