Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Biểu diễn dao động của vật tương ứng trên đường tròn.
+ Tại t = 0 , vật đi qua vị trí x = -0,5A = -2 cm theo chiều dương.
→ Sau khoảng thời gian 1 s, vật đi được quãng đường S = 0,5A+A = 6 cm → Vật đến biên.
Ta chú ý rằng, sau khoảng thời gian 2016 s = 672 T vật quay về vị trí ban đầu → trong 1 s thứ 2017 vật cũng sẽ đi được quãng đường 6 cm.
Đáp án A
Trong giây thứ 2019 thiệt à?
Vậy thì khó gì, vẽ đường tròn ra và phân tích thôi
\(T=\dfrac{2\pi}{\pi}=2\left(s\right)\) => 1s nó đi được 4+4=8 (cm)
Trong khoảng thời gian từ t=0 đến t=2018 thì vật đi được 2018/2=1009 chu kỳ và trở lại vị trí ban đầu=> Đi được 8(cm)
Biểu diễn dao động bằng véc tơ quay:
x 4 -4 -2 M N O 30°
Ban đầu, véc tơ quay xuất phát ở M, để dao động đi được 6cm thì véc tơ quay sẽ quay đến N.
Trên hình vẽ ta tìm được góc quay là: \(\alpha=90+30=120^0\)
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{\pi}{30}\)
\(\Rightarrow T=\dfrac{\pi}{10} (s)\)
\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)
Cơ năng của vật: \(W=\dfrac{1}{2}.m.\omega^2.A^2=\dfrac{1}{2}.1.20^2.0,04^2=0,32(J)\)
\(20-10\sqrt{2\left(A-\frac{A}{\sqrt{2}}\right)}\Rightarrow\frac{T}{4}=1\Rightarrow T=4\left(s\right)\)
\(S=S_{2012}-S_{2011}=A\sqrt{2}=10\sqrt{2}\) (cm)
Không có đáp án đó nhưng bạn giải thích cách làm của bạn cho mình với.