Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=Acos(\(\omega t+\varphi\))
Tại thời điểm t=0, ta có:
\(\frac{A}{2}=Acos\left(\varphi\right)\) \(\Rightarrow\)\(\varphi=-\frac{\pi}{6}\)(do vật chuyển động theo chiều dương)
\(\Rightarrow\) \(x=Acos\left(\omega t-\frac{\pi}{6}\right)\)
cái này mình tưởng phải bằng: x=Acos(\(\omega t+\frac{\pi}{3}\)) chứ.
Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)
\(\Rightarrow A = 4cm\)
\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)
\(v>0\Rightarrow \varphi < 0\)
Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)
Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)
Đáp án D
Chu kì dao động
Trong một chu kì dao động, thời gian lò xo bị nén là khoảng thời gian vật đi từ x = ∆l đến x = A rồi trở về x = ∆l, tức là ∆t = 2t0 với t0 là thời gian đi từ x = ∆l đến x = A (giả sử chiều dương của trục tọa độ hướng lên).
Theo giả thiết:
Khi lò xo giãn 8 cm vật đang chuyển động chậm dần đều nên đang đi ra biên, đi theo chiều dương hướng xuống