Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Chu kì của dao động điều hoà là khoảng thời gian để vật thực hiện một dao động toàn phần
Cách giải:
Trong 1 phút = 60s vật thực hiện được 30 dao động
=>T = 60/30 = 2s
+ Quãng đường vật đi được trong nửa chu kì là S = 2A = 18 cm, vậy A = 9 cm.
Đáp án C
1 phút thực hiện được 30 dao động toàn phần
\(\Rightarrow t=\frac{60}{30}=2s\)
\(t=8s=4T\)
Trong 1chu kì T, quãng đường vật đi được \(=4A\)
\(\Rightarrow\) Trong 4T, vật đi được \(4,4A=16A=64cm\)
\(\Rightarrow\) Biên độ \(A=64\) / \(16=4cm\)
Tốc độ trung bình \(v = \frac{\text{quãng đường đi được}}{t} \)
Vời thời gian t = 1,6s là không đối tức là \(v_{min} <=> S_{min}\)
Ta có: \(T = \frac{60s}{50} = 1,2s ; A = \frac{16}{2} = 8cm.\)
Nhận xét \(t = 1,6 > T/2 = 0.6 \) nên ta tách: \(t = 2.0,6+0.4 = 2.t_1+t_2\)
Ta sẽ đi tìm quãng đường nhỏ nhất ứng với thời gian \(t_1 = 0.6 s\). Để tìm được quãng đường nhỏ nhất ứng với \(t_1 = 0.6 s\) ta sẽ dùng đường tròn và quỹ đạo của vật sẽ lấy vị trí biên làm trung điểm. Tức là
Góc quay đương ưng với \(t_1 = 0.6 s\) là \(\varphi _1 = t_1 \omega = 0.6\frac{2\pi}{1,2} = \pi.\) Cung quay được sẽ lấy biên làm trung điểm tức là cung \(\stackrel\frown{MaN} = \pi\)
=> \(S_{1min} = 2. A. (1)\) (2 lần đoạn màu đỏ trên hình ứng với đi từ N đến biên A rồi từ biên A đến điểm M)
Chú ý là quãng đường đường đi được trong t = T/2 thì luôn luôn là 2A. Nên có thể không cần tính mà áp dụng luôn.
Tương tự ta sẽ tìm quãng đường nhỏ nhất ứng với thời gian \(t_2 = 0.4 s\) => \(\varphi _2 = t_2 \omega = 0.4\frac{2\pi}{1,2} = \frac{2\pi}{3}.\)
=> \(S_{2min} = 2. (A - \frac{A}{2} ). (2)\) (2 lần đoạn màu đỏ trên hình ứng với đi từ Q đến biên A rồi từ biên A đến điểm P)
Từ (1) và (2) ta thu được \(v_{min} = \frac{S_{min}}{t} = \frac{2S_{1}+S_2}{t} = \frac{4A+2(A-\frac{A}{2})}{1,6} = \frac{A. (6-1)}{1,6} =25 cm/s.\)
Như vậy đáp án thu được là D. 25cm/s.
Chu kì dao động của vật
Đáp án A