\(\pi\)t).thời điểm vật đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

\(v=-2\pi\sin(0,5\pi t+\dfrac{\pi}{3})(cm/s)\)

\(\Rightarrow A = \dfrac{2\pi}{0,5\pi}=4(cm)\)

\(\varphi=\dfrac{\pi}{3}-\dfrac{\pi}{2}=-\dfrac{\pi}{6}(rad)\) (do li độ trễ pha \(\dfrac{\pi}{2}\) so với vận tốc)

\(\Rightarrow x = 4\cos(0,5\pi t-\dfrac{\pi}{6})(cm)\)

4 -4 2 M N

Thời điểm đầu tiên vật qua li độ 2cm theo chiều dương ứng với véc tơ quay từ M đến N

\(\Rightarrow t = \dfrac{30+3.90+30}{360}.4=\dfrac{11}{3}(s)\)

26 tháng 7 2016

Ta có : T = 1s

Khi đó : ▲t = 7/6 = 1 + 1/6 = T + T/6 (giây)

Trong một chu kỳ T vật đi qua vị trí x = 1 cm 2 lần

Vì pha ban đầu là -π/2 dựa vào đường tròn lượng giác ta suy ra trong khoảng thời gian T/6 vật đi qua vị trí x = 1 cm 1 lần

Vậy có : 2 lần + 1 lần = 3 lần

30 tháng 9 2015

Phương trình tổng quát: \(x= A cos(\omega t+\varphi)\)

+ Tần số góc: \(\omega = 2\pi/2 = \pi \ (rad/s)\)

+ t=0, vật qua VTCB theo chiều đương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ cm\\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)

Vậy phương trình dao động: \(x = 5\cos(\pi t - \frac{\pi}{2})\) (cm)

19 tháng 5 2018

tại sao lại ra φ=\(\dfrac{-\pi}{2}\) làm cách nào vậy bạn???

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
17 tháng 6 2016

Mỗi câu hỏi bạn nên hỏi 1 bài thôi nhé.

Bài 1: 

Áp dụng công thức độc lập thời gian: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow A^2= 2^2+\dfrac{(4\pi\sqrt 3)^2}{\omega^2}=3^2+\dfrac{(2\pi\sqrt 7)^2}{\omega^2}\)

\(\Rightarrow \omega=2\pi\) (rad/s)

Và \(A=4\) (cm)

Tìm pha ban đầu \(\varphi\) bằng cách: \(\cos(\varphi)=\dfrac{x_1}{A}=\dfrac{1}{2}\)

Ban đầu vật đi theo chiều dương \(\rightarrow \varphi <0\)

\(\Rightarrow \varphi=-\dfrac{\pi}{3}\)

Vậy PT: \(x=4\cos(2\pi t-\dfrac{\pi}{3})\) (cm)

b) 

M N 4 -4 -2 O

Biểu diễn dao động của vật bằng véc tơ quay như hình vẽ

Thời điểm đầu tiên vật qua x1 theo chiều âm ứng với véc tơ quay từ M đến N

Góc quay \(\alpha =60.2=120^0\)

Thời gian: \(i=\dfrac{120}{360}T=\dfrac{1}{3}s\)

17 tháng 6 2016

Bài 2: 

O chính là vị trí cân bằng với 2 biên là M, N

Thời gian vật đi từ O đến M là T/4

\(\Rightarrow T/4=6\Rightarrow T =24s\)

Biểu diễn dao động điều hoà bằng véc tơ quay ta có:

M N O P Q I

Vật đi từ O đến trung điểm I của ON ứng với véc tơ quay từ P đến Q

Góc quay: \(\alpha =30^0\)

Thời gian: \(t=\dfrac{30}{360}T=\dfrac{1}{12}.24=2(s)\)

16 tháng 6 2016

Mỗi câu hỏi bạn nên hỏi 1 bài thôi để tiện trao đổi nhé.

Biểu diễn dao động bằng véc tơ quay ta có:

M x 2 1 O N

Để vật qua li độ 1 cm theo chiều dương thì véc tơ quay qua N.

Trong giây đầu tiên, véc tơ quay đã quay 1 góc là: \(5\pi\), ứng với 2,5 vòng quay.

Xuất phát từ M ta thấy véc tơ quay quay đc 2,5 vòng thì nó qua N 3 lần do vậy trong giây đầu tiên, vật qua li độ 1cm theo chiều dương 3 lần.

Bạn xem thêm lí thuyết phần này ở đây nhé 

Phương pháp véc tơ quay và ứng dụng | Học trực tuyến

16 tháng 6 2016

Bài 1 :

T = 2π / ω = 0.4 s 
Vật thực hiện được 2 chu kì và chuyển động thêm trong 0.2 s (T/2 ) nữa 
1 chu kì vật qua vị trí có li độ x=2cm theo chiều dương được "1 " lần 
⇒ 2 ________________________________________... lần 
phần lẻ 0.2s (T/2) , (góc quét là π ) (tức là chất điểm CĐ tròn đều đến vị trí ban đầu và góc bán kính quét thêm π (rad) nữa, vị trí lúc nầy: 
x = 1 + 2cos(-π/2 + π ) = 1, (vận tốc dương) vật qua vị trí có li độ x=2cm theo chiều dương thêm 1 lần nữa 
(từ VT ban đầu (vị tri +1 cm ) –> biên dương , về vị trí có ly độ x = +1 cm 
do đó trong giây đầu tiên kể từ lúc t=0 vật qua vị trí có li độ x=2cm theo chiều dương được 3 lần

Chọn A 

26 tháng 12 2019