Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 10 -10 M N
Vật cách VTCB không quá 10cm, suy ra:|x|<10cm
Vị trí đó được biểu diễn như véc tơ quay trên hình vẽ.
1/3 chu kỳ, véc tơ quay 1/3 * 360 = 1200
Như vậy, mỗi góc nhỏ là 300 như hình vẽ, suy ra biên độ là 2.10 = 20cm
Quãng đường vật đi đc lớn nhất khi nó đi quanh VTCB. Trong thời gian 1/6 chu kỳ, góc quay là 1/6 * 360 = 600
Như vậy, ứng với véc tơ quay từ M đến N.
Quãng đường Max = 10 + 10 = 20cm.

Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)

Khi vật I qua VTCB thì nó có vận tốc là: \(v=\omega.A\)
Khi thả nhẹ vật II lên trên vật I thì động lượng được bảo toàn
\(\Rightarrow M.v = (M+m)v'\Rightarrow v'=\dfrac{3}{4}v\)
Mà \(v'=\omega'.A'\)
\(\dfrac{v'}{v}=\dfrac{\omega'}{\omega}.\dfrac{A'}{A}=\sqrt{\dfrac{M}{\dfrac{4}{3}M}}.\dfrac{A'}{A}=\dfrac{3}{4}\)
\(\Rightarrow \dfrac{A'}{A}=\dfrac{\sqrt 3}{2}\)
\(\Rightarrow A'=5\sqrt 3cm\)
Chọn A.
Vận tốc của M khi qua VTCB: v = ωA = 10.5 = 50cm/s
Vận tốc của hai vật sau khi m dính vào M: v’ = Mv/(M+v)= 40cm/s
Cơ năng của hệ khi m dính vào M: W = 1/2KA'2= 1/2(m+M)v'2
A’ = 2căn5

Biểu diễn dao động điều hòa bằng véc tơ quay, trong thời gian T/4, véc tơ quay một góc 360/4 = 900.
Quãng đường lớn nhất khi vật có tốc độ trung bình lớn nhất --> vật chuyển động quanh VTCB từ góc 450trái đến 450 phải.
A -A 45 45 M N
\(S_{max}=MN=2.A\cos45^0=A\sqrt{2}\)

\(t=\dfrac{1}{3}s=\dfrac{T}{6}\)
Trong thời gian này, biểu diễn bằng véc tơ quay thì véc tơ đã quay được 1 góc là: \(\alpha=\dfrac{360}{6}=60^0\)
Quãng đường lớn nhất khi tốc độ trung bình trong thời gian này là lớn nhất, do vậy vật dao động quanh vị trí cân bằng với góc quay tương ứng là \(60^0\).
Biểu diễn trên véc tơ quay như sau:
5 -5 O M N 30 30
Quãng đường lớn nhất là đoạn MN
\(MN=2.5.\sin 30^0=5(cm)\)

Khoảng thời gian vận tốc của vật không vượt quá \(6\pi cm/s\) là \(\frac{\Delta t}{T}=\frac{1}{3}\)
\(\Rightarrow\)Góc quét: \(\Delta\varphi=\frac{2\pi}{T}\frac{T}{3}=\frac{2\pi}{3}\left(rad\right)\)
\(\Rightarrow\) VTLG
-v
\(\Rightarrow\cos\varphi=\cos\left(90-30\right)=\frac{v}{v_{max}}=\frac{1}{2}\Rightarrow v_{max}=12\pi=\)\(\omega A\Rightarrow A=3,6cm\)

Biên độ dao động: A = 5cm.
Quãng đường vật đi trong một chu kì: 4A = 4.5 = 20cm.
Đáp án C
Phương pháp: Quãng đường vật đi được trong 1 chu kì là 4ª
Cách giải:
Quãng đường vật đi được trong 5 chu kì là S = 5.4A = 5.4.0,5 = 10 m
=> Chọn C