Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

V = 50 cm/s = 0,5 m/s
Khi đi qua vị trí cân bằng thì :
Vmax = \(\omega A=0,5\frac{m}{s}\)(*)
Khi ở biên độ thì Amax = \(A\omega^2=5\frac{m}{s^2}\) (**)
Lấy (**) chia (*) => \(\omega=10\)
Vậy Amax /w = 0,05 m = 5 cm

vận tốc tại vị trí cân bằng:
vmax=A.w=40(cm/s) (1)
gia tốc tại vị trí biên:
a(max)=A.w^2=200(cm/s^2) (2)
lập tỉ số (2)/(1) ta được:
w=5(rad/s)
thế w vào (1)=>A=8(cm) = 0,8 m

Hướng dẫn:
+ Khi qua VTCB vật đạt vận tốc cực đại: \(v_{max}=\omega.A=62,8(cm/s)=20\pi(cm/s)\)
+ Khi vật ở biên thì gia tốc cực đại: \(a_{max}=\omega^2.A=200cm/s^2\)
Giải hệ pt trên ta tìm đc \(\omega=\pi(rad/s) \); \(A=20cm\)

Chọn D
+ Phương trình dao động: x = Acos(ωt + φ)
+ Tìm A: thay x = 2cm và v = 10 cm/s vào hệ thức A 2 = x 2 + v 2 w 2 đ ư ợ c A = 2 2
+ t = 0: x = 2√2 cosφ = -2; v = -Asinφ < 0 => φ = 3π/4 rad.
=> x = 2 2 cos ( 5 t + 3 π 4 ) c m .

Chọn A
+ Từ biểu thức tổng quát: x = Acos(ωt + φ).
* Tìm A:
Thay số
* Tìm φ:
Thay các giá trị của φ vào v =>
Vật ở vị trí biên : \(\Leftrightarrow a=\omega^2A\Leftrightarrow\omega=\sqrt{\dfrac{a}{A}}=10\left(rad\backslash s\right)\)