Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Gắn hệ trục tọa độ như hình vẽ
+ Viết phương trình định luật II – Niuton cho vật ta được:
P → + F m s → = m a → (1)
+ Chiếu (1) lên các phương ta được:
Ox:
P x − F m s = m a → a = P x − F m s m = P sin α − μ P cos α m = g sin α − μ g cos α
+ Vì mặt phẳng nghiêng nhẵn nên hệ số ma sát bằng 0, do đó: a = g . sin α = 10. sin 30 0 = 5 m / s 2
+ Vận tốc của vật ở cuối mặt phẳng nghiêng là: v = 2 a l = 2.5.10 = 10 m / s
+ Gia tốc của vật trên mặt phẳng ngang là:
a ' = − F m s m = − μ m g m = − μ g = − 0 , 1.10 = − 1 m / s 2
+ Thời gian vật đi trên mặt phẳng ngang là: t ' = v ' − v 0 ' a ' = 0 − v a ' (do vật dừng lại nên v′=0 )
Ta suy ra: t ' = − v a ' = − 10 − 1 = 10 s
Đáp án: B
Chiếu lên trục tọa độ Ox có phương trùng với phương mp nghiêng, chiều hướng xuống
Oy có phương vuông góc với mpn, chiều hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:mg\sin\alpha\ge\mu N\\Oy:N=mg\cos\alpha\end{matrix}\right.\Rightarrow mg\sin\alpha\ge\mu mg\cos\alpha\)
\(\Leftrightarrow\sin\alpha\ge\mu\cos\alpha\)
Chỗ bạn học giải bpt lượng giác chưa vậy?
Chọn mốc thế năng tại mặt nằm ngang BC
Theo định luật bảo toàn năng lượng
W A = W D + A m s M à W A = m g z A = m .10.1 = 10. m ( J ) W D = m g z D = m .10. z D = 10 m z D ( J ) A m s = μ m g cos α . A B + μ m g . B C + μ m g cos β . C D ⇒ A m s = μ m g ( cos 60 0 . A B + B C + cos 30 0 . C D )
⇒ A m s = 0 , 1.10. m ( cos 60 0 . A H sin 60 0 + B C + cos 30 0 . z D sin 30 0 ) = m ( 1 3 + 0 , 5 + 3 . z D ) ⇒ 10 m = 10 m z D + m ( 1 3 + 0 , 5 + 3 z D ) ⇒ 10 − 1 3 − 0 , 5 = 10 z D + 3 z D ⇒ z D = 0 , 761 ( m )
Chọn mốc thế năng tại mặt nằm ngang BC
Theo định luật bảo toàn năng lượng
W A = W C + A m s
Mà W A = m g . A H = m .10 = 10. m ( J ) ; W C = 0 ( J ) A m s = μ m g cos α . A B + μ m g . B C = 0 , 1. m .10. cos 30 0 . A H sin 30 0 + 0 , 1. m .10. B C ⇒ A m s = m . 3 . + m . B C ⇒ 10. m = 0 + m 3 + m . B C ⇒ B C = 8 , 268 ( m )
200g=0,2kg
các lực tác dụng lên vật khi ở trên mặt phẳng nghiêng
\(\overrightarrow{P}+\overrightarrow{N}=m.\overrightarrow{a}\)
chiếu lên trục Ox có phương song song với mặt phẳng nghiêng, chiều dương cùng chiều chuyển động
P.sin\(\alpha\)=m.a\(\Rightarrow\)a=5m/s2
vận tốc vật khi xuống tới chân dốc
v2-v02=2as\(\Rightarrow\)v=\(4\sqrt{5}\)m/s
khi xuống chân dốc trượt trên mặt phẳng ngang xuất hiện ma sát
các lực tác dụng lên vật lúc này
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a'}\)
chiếu lên trục Ox có phương nằm ngang chiều dương cùng chiều chuyển động của vật
-Fms=m.a'\(\Rightarrow-\mu.N=m.a'\) (1)
chiếu lên trục Oy có phương thẳng đứng chiều dương hướng lên trên
N=P=m.g (2)
từ (1),(2)\(\Rightarrow\)a'=-2m/s2
thời gian vật chuyển động trên mặt phẳng đến khi dừng lại là (v1=0)
t=\(\dfrac{v_1-v}{a'}\)=\(2\sqrt{5}s\)
a. Chọn hệ quy chiếu Oxy như hình vẽ, chiều dương là chiều chuyển động. Vật chịu tác dụng của các lực f m s → ; N → ; P →
Theo định luật II newton ta có: f → m s + N → + P → = m a → 1
Chiếu Ox ta có :
P x − f m s = m a 1 ⇒ P sin α − μ N = m a 1
Chiếu Oy ta có: N = P y = P cos α
⇒ a 1 = g sin α − μ g cos α
⇒ a 1 = 10. 1 2 − 0 , 1.10. 3 2 = 4 , 134 m / s 2
Vận tốc của vật ở chân dốc.
Áp dụng công thức v 1 2 − v 0 2 = 2 a 1 s
⇒ v 1 = 2 a 1 s = 2.4 , 134.40 ≈ 18 , 6 m / s
b. Chọn hệ quy chiếu Oxy như hình vẽ , chiều dương (+) Ox là chiều chuyển động .Áp dụng định luật II Newton
Ta có F → m s + N → + P → = m a → 2
Chiếu lên trục Ox: − F m s = m a 2 ⇒ − μ . N = m a 2 1
Chiếu lên trục Oy: N – P = 0 ⇒ N = P=mg
⇒ a 2 = − μ g = − 0 , 2.10 = − 2 m / s 2
Để vật dừng lại thì v 2 = 0 m / s
Áp dụng công thức:
v 2 2 − v 1 2 = 2 a 2 . s 2 ⇒ s 2 = − 18 , 6 2 2. − 2 = 86 , 5 m
Đáp án B.
Các lực tác dụng lên vật như hình vẽ.
Áp dụng định luật II Niu-tơn: