Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quãng đường đi được trong 1s cuối
\(\dfrac{1}{2}\cdot a\cdot5^2-\dfrac{1}{2}\cdot a\cdot\left(5-1\right)^2=1,5\Rightarrow a=\dfrac{1}{3}\left(\dfrac{m}{s^2}\right)\)
Vậy gia tốc của vật là 1/3 (m/s^2)
Quãng đường đi dc từ khi hãm phanh đến khi dừng lại
\(s=\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot5^2=\dfrac{25}{6}\left(m\right)\)
<chỗ nào sai chỉ mình hoặc ko hiểu thì bình luận câu trả lời nha>
\(v^2-v^2_0=2as\)
\(\Rightarrow5^2-v^2_0=2a.10\)
\(\Rightarrow25-v^2_0=20a\left(1\right)\)
Lại có: \(10^2-v^2_0=2a.47,5\)
\(\Rightarrow100-^2_0=95a\left(2\right)\)
Từ (1) và (2) ta có hệ : \(\left\{{}\begin{matrix}25-v^2_0=20a\\100-v^2_0=95a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=1m\text{/ }s^2\\v_0=\sqrt{5m\text{/ }s}\end{matrix}\right.\)
Chọn gốc tọa độ tại vị trí xe hãm phanh.
Chiều \(\left(+\right)\) là chiều chuyển động \(\left(v\ge0\right)\).
Gốc thời gian là thời điểm xe hãm phanh.
Lúc \(t=0\) thì \(v_0=72km/h=20m/s\)
\(t=10s\) thì \(v=0\)
\(a,a=?m/s^2\)
Ta có : \(a=\dfrac{\Delta v}{\Delta t}=\dfrac{v-v_0}{10}=\dfrac{0-20}{10}=-2m/s^2\)
\(b,s=?m\)
Ta có : \(d=v_0t+\dfrac{1}{2}at^2=20.10+\dfrac{1}{2}\left(-2\right).10^2=100\left(m\right)\)
Do \(v\ge0\Rightarrow s=d=100m\)
\(c,\) Quãng đường đi được của xe trong 8s đầu là :
\(s_1=v_0t_1+\dfrac{1}{2}at_1^2=20.8+\dfrac{1}{2}\left(-2\right).8^2=96\left(m\right)\)
Quãng đường đi được của xe trong 2s cuối là : \(s-s_1=100-96=4\left(m\right)\)
Vì quãng đường trong 2s đầu và 2s cuối có cùng thời gian nên ta có s của 2s đầu và cuối bằng nhau.
Vậy ...