Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Giản đồ vecto:
Áp dụng ĐL hàm sin:
Theo đề bài, A chỉ bằng 1 nửa giá trị max A = 10 c m
Đáp án A
+ Ta có
A 2 = A 1 2 + A 2 2 + 2 A 1 A 2 cos Δ φ ⇔ A 1 2 - 3 A 2 A 1 + A 2 2 - 81 = 0
=> Để phương trình trên tồn tại nghiệm A t thì Δ ≥ 0 ⇔ A 2 max = 18 c m .
Thay giá trị A 2 vào phương trình đầu, ta tìm được A 1 = 9 3 c m .
+ Từ hình vẽ, áp dụng định lý hàm cos trong tam giác ta có:
A12 = A22 + A2 - 2A2Acos(A,A2)
+ Phương trình trên luôn có nghiệm nên:
D = 3A2 - 4(A2 - 100) ³ 0 ® A £ 20 ® Amax = 20 cm