Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì vật chuyển động đều
\(\Rightarrow\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{P}+\overrightarrow{F_{ms}}=\overrightarrow{0}\)
Chọn trục toạ độ có trục hoành hướng sang phải, trục tung hướng lên
\(\Rightarrow\left\{{}\begin{matrix}Ox:F.\cos\alpha-F_{ms}=0\\Oy:F.\sin\alpha+N-P=0\end{matrix}\right.\)
\(\Rightarrow F.\cos\alpha-\mu.\left(P-F.\sin\alpha\right)=0\)
\(\Leftrightarrow120.\cos60-\mu.\left(200-120.\sin60\right)=0\)
=> \(\mu=...\)
Tìm gia tốc trong trường hợp alpha= 300 thì lúc này vật chuyển động biến đổi đều nên có gia tốc, tức là \(\overrightarrow{F}+\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F_{ms}}=m.\overrightarrow{a}\)
Cậu chiếu lên trục toạ độ rồi phân tích, bt hệ số ma sát rồi thì tìm a ez
chọn hệ trục xOy như hình vẽ ta có
các lực tác dụng lên vật là: \(\overrightarrow{Fms},\overrightarrow{F},\overrightarrow{P},\overrightarrow{N}\)
theo định luật 2 Newton ta có
\(\overrightarrow{F}+\overrightarrow{Fms}+\overrightarrow{P}+\overrightarrow{N}=\overrightarrow{a}.m\left(1\right)\)
chiếu phương trình 1 lên trục Oy ta có
-P + N=0
\(\Leftrightarrow\)P=N\(\Rightarrow\)Fms=\(\mu.N=\mu.mg\)
chiếu pt 1 lên trục Ox ta có
F-Fms=am
\(\Rightarrow\)F=am-Fms=a.m-\(\mu mg\)=1,25.10-0,3.4.10=0,5(N)
Vậy ..........
O x y P N Fms F
a) Gọi m là khối lượng hàng hóa trên xe.
Theo đề bài, ta có: \(F=0,3\times1500=450N\)
lại có \(F=0,2\times\left(m+1500\right)\)= 450
giải phương trình trên, ta được m = 750 kg
==> Vậy khối lượng hàng hóa trên xe là 750 kg
a) theo định luật II niu tơn
\(\overrightarrow{F}+\overrightarrow{N}+\overrightarrow{F_{ms}}+\overrightarrow{P}=m.\overrightarrow{a}\) (1)
chiếu (1) lên trục Ox phương nằm ngang chiều dương cùng chiều chuyển động
\(cos\alpha.F-\mu.N=m.a\) (2)
chiếu (1) lên trục Oy phương thẳng đứng chiều dương hướng lên trên
N=P-sin\(\alpha\).F (3)
từ (2),(3) và để vật chuyển động với a=0,5
\(\Rightarrow F\approx\)19N
b) sau 3s lực kéo biến mất
theo định luật II niu tơn
\(\overrightarrow{N}+\overrightarrow{F_{ms}}+\overrightarrow{P}=m.\overrightarrow{a'}\) (*)
chiếu (*) lên trục Ox phương nằm ngang chiều dương cùng chiều chuyển động
\(-\mu.N=m.a'\) (4)
chiếu (*) lên trục Oy phương thẳng đứng chiều dương hướng lên trên
\(N=P-sin\alpha\) (5)
từ (4),(5)
\(\Rightarrow a'\approx-2,46\)m/s2
ngay sau khi lực F biến mất vận tốc vật lúc đó là
v=a.t=1,5m/s2
thời gian vật đi được đến khi dừng kể từ lúc lực F biến mất
t=\(\dfrac{v_1-v}{a'}\approx0,6s\)
Fms=\(\mu\).N
N=\(P-sin\alpha.F=\)\(20-10\sqrt{2}\)N
\(\Rightarrow F_{ms}=\)\(4-2\sqrt{2}\)N
công của lực ma sát
\(A_{F_{ms}}=F_{ms}.s.cos180^0\)=\(-8+4\sqrt{2}\)J
a)Vật chuyển động thẳng đều:
Lực ma sát:
\(F_{ms}=\mu mg=0,1\cdot5\cdot10=5N\)
\(\Rightarrow F_k=P=10m=10\cdot5=50N\)
b)Sau khi chuyển động đc 2s:
Vật chuyển động trên mặt phẳng nằm ngang thì theo định luật ll Niu-tơn ta có:
\(\overrightarrow{F}+\overrightarrow{F_{ms}}=m\cdot\overrightarrow{a}\)
Gia tốc vật: \(S=\dfrac{1}{2}at^2\Rightarrow a=\dfrac{2S}{t^2}=\dfrac{2\cdot5}{2^2}=2,5\)m/s2
Chọn chiều dương là chiều chuyển động.
\(\Rightarrow F-F_{ms}=m\cdot a\)
\(\Rightarrow F=m\cdot a+F_{ms}=5\cdot2,5+5=17,5N\)
Áp dụng ĐL II Newton có:
\(\overrightarrow{P}+\overrightarrow{N}+\overrightarrow{F}+\overrightarrow{F_{ms}}=m\overrightarrow{a}\) (*)
a. Để vật chuyển động thẳng đều thì \(a=0\)
Chiếu (*) lên phương thẳng đứng có:
\(N=P=mg=60\) (N)
Chiếu (*) lên phương chuyển động có:
\(F\cos45^o=F_{ms}\)
\(\Rightarrow F=\dfrac{0,1.60}{\cos45^o}=8,5\) (N)
b. Gia tốc của vật là:
\(a=\dfrac{2s}{t^2}=\dfrac{2.8}{4^2}=1\) (m/s2)
Khi đó:
\(F\cos45^o-F_{ms}=ma\)
\(\Rightarrow F=\dfrac{6.1+0,1.60}{cos45^o}=16,97\) (N)