K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(v\left(t\right)=s'\left(t\right)=4\left[cos\left(2\pi t-\dfrac{\pi}{8}\right)\right]'\\ =-4\left(2\pi t-\dfrac{\pi}{8}\right)'sin\left(2\pi t-\dfrac{\pi}{8}\right)\\ =-8\pi sin\left(2\pi t-\dfrac{\pi}{8}\right)\)

Vận tốc của vật khi t = 5s là \(v\left(5\right)=-8\pi sin\left(10\pi-\dfrac{\pi}{8}\right)\approx9,6\left(m/s\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tại thời điểm t là \(v\left( t \right) = s'\left( t \right) = 0,5.2\pi \cos \left( {2\pi t + \frac{\pi }{5}} \right) = \pi \cos \left( {2\pi t + \frac{\pi }{5}} \right)\)

Gia tốc tức thời của vật tại thời điểm t là \(a\left( t \right) = v'\left( t \right) =  - \pi .2\pi \sin \left( {2\pi t + \frac{\pi }{5}} \right) =  - 2{\pi ^2}\sin \left( {2\pi t + \frac{\pi }{5}} \right)\)

Tại thời điểm t = 5 giây, gia tốc của vật là \(a\left( 5 \right) =  - 2{\pi ^2}\sin \left( {2\pi .5 + \frac{\pi }{5}} \right) \approx  - 11,6\)(cm/s2)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(v\left(t\right)=s'\left(t\right)=0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)\\ a\left(t\right)=v'\left(t\right)=-0,64\pi^2sin\left(0,8\pi t+\dfrac{\pi}{3}\right)\)

Vì: 

\(v\left(t\right)=0\\ \Leftrightarrow0,8\pi cos\left(0,8\pi t+\dfrac{\pi}{3}\right)=0\\ \Leftrightarrow0,8\pi t+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi,k\in Z\\ \Leftrightarrow0,8\pi t=\dfrac{\pi}{6}+k\pi\\ \Leftrightarrow t=\dfrac{5}{24}+\dfrac{5k}{4}\)

Thời điểm vận tốc bằng 0, giá trị tuyệt đối của vật là 

\(\left|a\left(\dfrac{5}{25}+\dfrac{5k}{4}\right)\right|=\left|-0,64\pi^2sin\left[0,8\pi\left(\dfrac{5}{24}+\dfrac{5k}{4}\right)+\dfrac{\pi}{3}\right]\right|\\ =0,64\pi^2\left|sin\left(\dfrac{\pi}{2}+k\pi\right)\right|\\ =0,64\pi^2\approx6,32\)

\(\Rightarrow\) Chọn C.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(v\left(t\right)=h'\left(t\right)=-9,8t\)

a, Vận tốc của vật tại thời điểm t = 5s là \(v\left(5\right)=-9,8\cdot5=-49\left(m/s\right)\)

b, Khi vật chạm đất thì \(h\left(t\right)=100-4,9t^2=0 \Rightarrow t=\dfrac{10\sqrt{10}}{7}\left(s\right)\)

Khi đó, vận tốc vật chạm đất là: \(v\left(\dfrac{10\sqrt{10}}{7}\right)=-9,8\cdot\dfrac{10\sqrt{10}}{7}=-14\sqrt{10}\left(m/s\right)\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Vật đi qua vị trí cân bằng thì x = 0

Khi đó

 \(\begin{array}{l}2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \\\Leftrightarrow t =   \frac{2\pi }{15} +  \frac{{k\pi }}{5}  ;k \in Z\end{array}\)

Do khoảng thời gian từ 0 đến 6 giây nên \(t \in \left[ {0;6} \right]\) 

 \(\begin{array}{l}0 \le \ \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le \ 6;k \in Z\\ \Rightarrow  \frac{-2 }{3}\le \ k \le \ \frac{90 - 2\pi}{3\pi};k \in Z\end{array}\)

Do \(k \in Z\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\)

Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

Ta có: \(v\left(t\right)=s'\left(t\right)=0,5\cdot\left(4\pi t\right)'cos\left(4\pi t\right)=2\pi cos\left(4\pi t\right)\)

Vì \(-1\le cos\left(4\pi t\right)\le1\Rightarrow-2\pi\le2\pi cos\left(4\pi t\right)\le2\Leftrightarrow-2\pi\le v\left(t\right)\le2\pi\)

Vậy vận tốc cực đại của hạt là \(2\pi cm/s\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vận tốc tức thời của chuyển động tại \(t = 2\) là:

\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)

Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).a) Hoàn thiện bảng sau về vận tốc trung bình trong những...
Đọc tiếp

Quãng đường rơi tự do của một vật được biểu diễn bởi công thức \(s\left( t \right) = 4,9{t^2}\) với \(t\) là thời gian tính bằng giây và \(s\) tính bằng mét.

Vận tốc trung bình của chuyển động này trên khoảng thời gian \(\left[ {5;t} \right]\) hoặc \(\left[ {t;5} \right]\) được tính bằng công thức \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\).

a) Hoàn thiện bảng sau về vận tốc trung bình trong những khoảng thời gian khác nhau. Nêu nhận xét về \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) khi \(t\) càng gần 5. 

b) Giới hạn \(\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) được gọi là vận tốc tức thời của chuyển động tại thời điểm \({t_0} = 5\). Tính giá trị này.

c) Tính giới hạn \(\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}}\) để xác định vận tốc tức thời của chuyển động tại thời điểm \({t_0}\) nào đó trong quá trình rơi của vật.

1
22 tháng 9 2023

a)

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left[ {5;5,1} \right]}\end{array}:t = 5,1 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{1^2} - 4,{{9.5}^2}}}{{5,1 - 5}} = 49,49\\\begin{array}{*{20}{l}}{\left[ {5;5,05} \right]}\end{array}:t = 5,05 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{05}^2} - 4,{{9.5}^2}}}{{5,05 - 5}} = 49,245\\\begin{array}{*{20}{l}}{\left[ {5;5,01} \right]}\end{array}:t = 5,01 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{01}^2} - 4,{{9.5}^2}}}{{5,01 - 5}} = 49,049\\\begin{array}{*{20}{l}}{\left[ {5;5,001} \right]}\end{array}:t = 5,001 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.5,{{001}^2} - 4,{{9.5}^2}}}{{5,001 - 5}} = 49,0049\\\begin{array}{*{20}{l}}{\left[ {4,999;5} \right]}\end{array}:t = 4,999 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{999}^2} - 4,{{9.5}^2}}}{{4,999 - 5}} = 48,9951\\\begin{array}{*{20}{l}}{\left[ {4,99;5} \right]}\end{array}:t = 4,99 \Rightarrow \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \frac{{4,9.4,{{99}^2} - 4,{{9.5}^2}}}{{4,99 - 5}} = 48,951\end{array}\)

 

Ta thấy: \(\frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}}\) càng gần 49 khi \(t\) càng gần 5.

b)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to 5} \frac{{s\left( t \right) - s\left( 5 \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,{{9.5}^2}}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - {5^2}} \right)}}{{t - 5}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - 5} \right)\left( {t + 5} \right)}}{{t - 5}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + 5} \right) = 4,9\left( {5 + 5} \right) = 49\end{array}\)

c)

\(\begin{array}{l}\mathop {\lim }\limits_{t \to {t_0}} \frac{{s\left( t \right) - s\left( {{t_0}} \right)}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9{t^2} - 4,9.t_0^2}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {{t^2} - t_0^2} \right)}}{{t - t_0^2}} = \mathop {\lim }\limits_{t \to 5} \frac{{4,9\left( {t - {t_0}} \right)\left( {t + {t_0}} \right)}}{{t - {t_0}}}\\ = \mathop {\lim }\limits_{t \to 5} 4,9\left( {t + {t_0}} \right) = 4,9\left( {{t_0} + {t_0}} \right) = 9,8{t_0}\end{array}\)

20 tháng 8 2023

$[v(t) = \frac{ds(t)}{dt} = \frac{d}{dt}(2t^3+4t+1)]$

$[a(t) = \frac{dv(t)}{dt} = \frac{d}{dt}(6t^2 + 4)]$

$[a(t) = 12t]$

Khi (t = 1), ta có:

$[v(1) = 6(1)^2 + 4 = 10 , \text{m/s}]$4

$[a(1) = 12(1) = 12 , \text{m/s}^2]$

Vậy, khi (t = 1), vận tốc của vật là 10 m/s và gia tốc của vật là $12 m/s$

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Xét phương trình \(\left| {17cos5\pi t} \right| = 10\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}17cos5\pi t = 10\\17cos5\pi t =-10\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}cos5\pi t = \frac{{10}}{{17}}\\cos5\pi t = -\frac{{10}}{{17}}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5\pi t =  \pm 0,9 + k2\pi \\5\pi t =  \pm 2,2 + k2\pi \end{array} \right.\left( {k\; \in \;\mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}t =  \pm 0,06 + k\frac{2}{5}\\t =  \pm 0,14 + k\frac{2}{5}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Độ dài bóng \(|x|\;\)bằng 10 cm tại các thời điểm \(t =  \pm 0,06 + k\frac{2}{5}\),\(t =  \pm 0,14 + k\frac{2}{5}\),\(k \in \mathbb{Z}\).