Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi chọn hs giỏi cấp huyện lớp 9 môn Sinh
https://dethihsg.com/tag/de-thi-hoc-sinh-gioi-mon-sinh-hoc-lop-9-co-dap-an/
Đề thi chọn đội dự tuyển tỉnh lớp 9 môn Sinh
https://dethi.violet.vn/present/show/entry_id/12187506
Cái đầu tiên tha hồ bn lựa nhé
vì lớp trưởng là h/s khá giỏi => có 10 cách chọn lớp trưởng.
lớp phó cũng là h/s khá giỏi => với mỗi cách chọn lớp trưởng có 9 cách chọn lớp phó
vi hai ủy viên ai làm cũng đc lên moi cách chọn lớp phó có 36 cách chọn ủy viên 1.
mỗi cách chọn ủy viên 1 có 35 cách chọn ủy viên 2.
vậy có 10*9*36*35=113400 cách chọn ban cán sự
Toán Văn Anh 8 hs 5 hs 7 hs 5 2 4 3
Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn
=> Số học sinh giỏi cả 3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh
Từ đo, ta tìm được số hs chỉ giỏi 2 trong 3 môn ( xem hình)
b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS
Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS
Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS
ĐS:...
Câu hỏi tương tự nha bạn
Mình thấy Cô Loan Quản Lý giải bài đó
Tick mình nha Bạn ^_^
Gọi T, V, A lần lượt là hs gỏi Toán, Văn, Anh
A)Hs giỏi 3 môn: T giao V giao A= ( T giao V) + ( V giao A) + ( T giao A) - 11 tất cả chia cho 3= (8+5+7-11)/3 = 3 (hs)
B) Hs giỏi đúng 1 môn Văn: 14-8- 2= 4( hs)( vì trong 5 hs vừa giỏi Văn, Anh đã có trong 3 hs giỏi 3 môn nên ta lấy 5-3=2)
Hs giỏi đúng 1 môn Toán : 15-8-4=3(hs) ( tương tự 7-3=4)
Hs giỏi đúng 1 môn Anh: 12-5-4= 3 (hs) ( tương tự 7-3=4)
Vì theo bài mỗi khối có ít nhất 1 hs nên ta có ba phương pháp chọn (không phải là cách chọn):
1. Chọn 1 hs lớp 10: có 5 cách; sau đó chọn 1 hs lớp 11: có 6 cách; cuối cùng chọn 2 hs lớp 12: có 28 cách.
Do đó ở pp này có 5+6+28 = 39 cách.
2. Chọn 1 hs lớp 10: có 5 cách; sau đó chọn 2hs lớp 11: có 15 cách; cuối cùng chọn 1 hs lớp 12: có 8 cách.
Do đó ở pp này có 5+15+8= 28 cách.
3. Chọn 2 hs lớp 10: có 10 cách; sau đó chọn 1 hs lớp 11: có 6 cách; cuối cùng chọn 1 hs lớp 12: có 8 cách.
Do đó ở pp này có 10+6+8=24 cách.
Vậy ta có tổng cộng 39+28+24=91 cách chọn.
Còn nếu chọn 4 người k theo khối lớp thì có tổng cộng 3 876 cách chọn.