Một tổ có 8 học sinh, trong đó có 4 học sinh nam và 4 học sinh nữ. Hỏi có bao nhiêu cách xếp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

Ta xét hai trường hợp:

TH1. Bạn nam đứng đầu hàng

Xếp 4 bạn nam vào 4 vị trí 1;3;5;7  có 4!=24 cách xếp 4 bạn nam

Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.

 Khi đó số cách sắp xếp là cách.

TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.

Vậy có  2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.

Chọn D.

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.Biết rằng:Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁ và công sai d > 0.Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh...
Đọc tiếp

Bài toán thực tế để cho học sinh biết: Trong một cuộc thi Toán của một khối học sinh, người ta xếp n học sinh (n > 20) thành một hàng dọc theo đúng thứ tự từ trái sang phải theo số báo danh tăng dần.
Biết rằng:

  1. Số báo danh của mỗi học sinh tạo thành một cấp số cộng (CSC) với số hạng đầu a₁công sai d > 0.
  2. Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8 từ trái sang.
  3. Tổng số báo danh của tất cả học sinh có vị trí chẵn (tính từ trái sang) đúng bằng 3 lần tổng số báo danh của các học sinh có vị trí lẻ.
  4. Nếu cộng tất cả số báo danh ở vị trí là bội của 3 rồi trừ đi tổng các số báo danh ở vị trí là bội của 4 thì được 2025.
  5. Biết rằng hiệu giữa số báo danh của học sinh cuối cùngsố báo danh của học sinh thứ 11 chính là 11 lần công sai.

Hãy xác định số lượng học sinh n, cũng như các giá trị a₁d thỏa mãn toàn bộ các điều kiện trên.

1
19 tháng 9

*Giải bài toán*

Gọi số hạng đầu là \(a_1\) và công sai là \(d\). Số hạng tổng quát là \(a_n = a_1 + (n-1)d\).


*Điều kiện 1*

Tổng số báo danh của 5 học sinh đứng giữa hàng là gấp 5 lần số báo danh của học sinh đứng thứ 8:

\[a_6 + a_7 + a_8 + a_9 + a_{10} = 5a_8\]

\[5a_1 + 35d = 5(a_1 + 7d)\]

Điều này luôn đúng.


*Điều kiện 2*

Tổng số báo danh của học sinh ở vị trí chẵn bằng 3 lần tổng số báo danh của học sinh ở vị trí lẻ:

\[S_{chẵn} = 3S_{lẻ}\]

Với \(n = 22\), ta có:

\[S_{chẵn} = a_2 + a_4 + ... + a_{22}\]

\[S_{lẻ} = a_1 + a_3 + ... + a_{21}\]

\[11a_1 + 110d = 3(11a_1 + 55d)\]

\[11a_1 + 110d = 33a_1 + 165d\]

\[22a_1 = -55d\]

\[2a_1 = -5d\]

*Điều kiện 3*

\[S_3 - S_4 = 2025\]

Với \(n = 22\), \(k = 7\), \(l = 5\):

\[S_3 = 7a_1 + 77d\]

\[S_4 = 5a_1 + 55d\]

\[2a_1 + 22d = 2025\]

*Điều kiện 4*

\[a_{22} - a_{11} = 11d\]

\[11d = 11d\]

\[n = 22\]

*Tìm \(a_1\) và \(d\)*

Từ \(2a_1 = -5d\) và \(2a_1 + 22d = 2025\):

\[2a_1 = -5d\]

\[-5d + 22d = 2025\]

\[17d = 2025\]

\[d = \frac{2025}{17} = 119\]

\[2a_1 = -5 \cdot 119\]

\[a_1 = -\frac{595}{2}\]

*Kết quả*

\[n = 22\]

\[a_1 = -\frac{595}{2}\]

\[d = 119\]

2 tháng 9 2019

- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.

Chọn A

18 tháng 12 2016

kgm=4^10

Xs=1/4^10

9 tháng 11 2016

có 840 cách chọn

11 tháng 11 2016

c1:

a) 840

b) ko có n thỏa mãn

31 tháng 7 2020

Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.

10 tháng 2 2021

xin fb chj ;-;