Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bước 1: Chọn 2 người trong 6 người còn lại, có C 6 2 cách chọn, để tao thành nhóm X thỏa điều kiện AabB đứng kề nhau với a và b là người vừa chọn.
Bước 2: Xếp X và 4 người còn lại (bỏ 4 người A, a, b, B) có 5! cách xếp.
Bước 3: Ứng với mỗi cách xếp ở bước 2 có 2! cách xếp hai người A và B, có 2! cách xếp hai người a và b.
Theo quy tắc nhân có C 6 2 . 5 ! . 2 ! . 2 ! = 7200 cách xếp thỏa yêu cầu.
Chọn C.
Xếp 2 bạn nữ đứng trước, số cách là 2!.
Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn; xếp 2 bạn nam đó là .
Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.
Số cách xếp 7 bạn này là 7!.
Áp dụng quy tắc nhân; số cách xếp tất cả là:
Chọn B.
- Nếu đánh số theo hàng dọc từ 1 đến 9 thì cần xếp 5 học nữ vào 5 vị trí lẻ nên có 5!cách xếp; và xếp 4 học sinh nam vào 4 vị trí chẵn nên có 4!cách xếp. Theo quy tắc nhân ta có, ta có 4!*5! Cách xếp 9 học sinh thành hàng dọc xen kẽ nam nữ.
Chọn A
Ta xét hai trường hợp:
TH1. Bạn nam đứng đầu hàng
Xếp 4 bạn nam vào 4 vị trí 1;3;5;7 có 4!=24 cách xếp 4 bạn nam
Có 4!=24 cách xếp 4 bạn nữ vào 4 vị trí còn lại.
Khi đó số cách sắp xếp là cách.
TH2. Bạn nữ đứng đầu hàng, tương tự TH1, suy ra có 242 cách sắp xếp.
Vậy có 2.242 cách sắp xếp thỏa mãn yêu cầu bài toán.
Chọn D.
Để xác định số cách xếp ta phải làm theo các công đoạn như sau.
1. Chọn 3 nam từ 6 nam. Có cách.
2. Chọn 2 nữ từ 5 nữ. Có cách.
3. Xếp 5 bạn đã chọn vào bàn đầu theo những thứ tự khác nhau. có 5! Cách.
Từ đó ta có số cách xếp là
Chọn C.
- Mỗi cách xếp có 4+5=9 học sinh thành hàng dọc là một hoán vị của 9 học sinh đó. Vậy có tất cả 9! Cách xếp. Chọn đáp án là C
Nhận xét: học sinh có thể nhầm lẫn xếp nam và nữ riêng nên cho kết quả 4!*5! (phương án A); hoặc vừa xếp nam và nữ riêng và sử dụng quy tắc cộng để cho kết quả 4!+5! (phương án B); hoặc chọn 4 học sinh nam trong p học sinh và 5 học sinh nữ trong 9 học sinh để cho kết quả A94.A95 ( phương án D)
Vì giữa 3 bạn nữ có 2 vị trí trống, để xếp thỏa yêu cầu phải có dạng A a B b C ¯ . Trong đó A, B, C là 3 bạn nữ, a, b là 2 bạn nam.
Bước 1: Chọn 2 bạn nam trong 3 bạn nam, có C 5 2 cách.
Bước 2: Gọi nhóm A a B b C ¯ là X. Xếp X và 3 bạn nam còn lại thành 1 hàng ngang có 4! cách.
Bước 2: Ứng với mỗi cách xếp ở bước 1, có 2! cách xếp các bạn nam trong X và 3! cách xếp các bạn nữ trong X.
Theo quy tắc nhân có C 4 2 . 4 ! . 3 ! . 2 ! = 2880 cách xếp thỏa yêu cầu.
Chọn C.