Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
a, Thay x = - 1 vảo pt trên ta được : \(1-2\left(m+1\right)+m^2-3m=0\)
\(\Leftrightarrow m^2-3m-2m-2+1=0\Leftrightarrow m^2-5m-1=0\)
\(\Delta=25-4\left(-1\right)=29>0\)
\(m_1=\frac{5-\sqrt{29}}{2};m_2=\frac{5+\sqrt{29}}{2}\)
b, Để phương trình có 2 nghiệm phân biệt : \(\Delta'=\left(m+1\right)^2-\left(m^2-3m\right)=m^2+2m+1-m^2+3m=5m-1>0\Leftrightarrow m>\frac{1}{5}\)
c, Để phương trình có nghiệm duy nhất khi \(5m-1=0\Leftrightarrow m=\frac{1}{5}\)
pt đã cho<=> 4x2 + 12y2 + 12xy - 32x - 64y + 92 =0
<=> (4x2 + 9y2 +12xy - 32x -48y +64) + ( 3y2 -16y +28) =0
<=> (2x+3y-8)2 + (3y2 -16y +28) =0
<=> 3(2x+3y-8)2 + (9y2 -48y +84) =0
<=> 3(2x+3y-8)2 +(3y-8)2 + 20=0 (pt vô nghiệm)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\)
\(1+\frac{a}{c}+\frac{a}{b}+\frac{b^2+c^2}{bc}=1+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}\)
Áp dụng bất đẳng thức Cosi vào 3 số "1"; "\(\frac{b}{c}\)";"\(\frac{c}{b}\)" có:
1+\(\frac{b}{c}+\frac{c}{b}\ge3\sqrt{1.\frac{b}{c}.\frac{c}{b}}\ge3\)
Hay 1 + \(\frac{a^2}{bc}\ge3\:\)(*)
\(\Leftrightarrow\frac{a^2}{bc}\ge2\) (1)
Áp dụng bất đẳng thức Cosi vào 2 số "\(\frac{a}{c}\)";"\(\frac{a}{b}\)" có:
\(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{\frac{a}{c}.\frac{a}{b}}=2\sqrt{\frac{a^2}{bc}}\) (2)
Từ (1),(2) suy ra: \(\frac{a}{c}+\frac{a}{b}\ge2\sqrt{2}\) (**)
Cộng (*),(**) vế theo vế ta có: \(1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}\ge3+2\sqrt{2}\)
Hay \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\left(dpcm\right)\)
Đổi tên thành "Thử thách cuối tuần" chứ mấy bài này không giải trí mấy.
Bài 1:
Căng quá, đang đi cứu trợ :))
Bài 2:
Xét \(\frac{x+2xy+1}{x+xy+xz+1}=\frac{x+2xy+xyz}{x+xy+xz+xyz}=\frac{1+2y+yz}{1+y+z+yz}=\frac{yz+y+z+1+y-z}{\left(y+1\right)\left(z+1\right)}\)
\(=\frac{\left(y+1\right)\left(z+1\right)+y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{y-z}{\left(y+1\right)\left(z+1\right)}=1+\frac{\left(y+1\right)-\left(z+1\right)}{\left(y+1\right)\left(z+1\right)}=1+\frac{1}{z+1}-\frac{1}{y+1}\)
Vì vai trò của x, y, z là như nhau nên chứng minh tương tự với 3 phân thức còn lại ta cũng có:
\(\frac{y+2yz+1}{y+yz+yx+1}=1+\frac{1}{x+1}-\frac{1}{z+1}\)
\(\frac{z+2zx+1}{z+zx+zy+1}=1+\frac{1}{y+1}-\frac{1}{x+1}\)
Cộng theo vế 3 đẳng thức ta có:
\(P=1+1+1+\left(\frac{1}{x+1}-\frac{1}{x+1}\right)+\left(\frac{1}{y+1}-\frac{1}{y+1}\right)+\left(\frac{1}{z+1}-\frac{1}{z+1}\right)=3\)
Vậy....
Bài 3:
Vì tam giác ABC vuông tại A nên theo Pytago ta có:
\(a^2=b^2+c^2\Leftrightarrow a=\sqrt{b^2+c^2}\)
\(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)=1+\frac{a}{c}+\frac{a}{b}+\frac{a^2}{bc}=1+a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{b^2+c^2}{bc}\) (1)
Áp dụng BĐT Cô-si:
+) \(b^2+c^2\ge2bc\Leftrightarrow\frac{b^2+c^2}{bc}\ge2\Leftrightarrow\frac{b^2+c^2}{bc}+1\ge3\) (2)
+) \(\frac{1}{b}+\frac{1}{c}\ge\frac{2}{\sqrt{bc}}\Leftrightarrow\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{4}{bc}\) (3)
Từ (2) và (3) ta có: \(\left(b^2+c^2\right)\left(\frac{1}{b}+\frac{1}{c}\right)^2\ge2bc\cdot\frac{4}{bc}=8\)
\(\Leftrightarrow\sqrt{b^2+c^2}\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\)
\(\Leftrightarrow a\cdot\left(\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{2}\) (4)
Từ (1), (2) và (4) suy ra \(\left(1+\frac{a}{b}\right)\left(1+\frac{a}{c}\right)\ge3+2\sqrt{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow b=c\) hay tam giác ABC vuông cân tại A.
Bài 1 :
Câu a : \(\sqrt{36}< \sqrt{37}\Leftrightarrow6< \sqrt{37}\)
Câu b : \(\sqrt{17}>\sqrt{16}\Leftrightarrow\sqrt{17}>4\)
Câu c : \(0,7< 0,8\Leftrightarrow\sqrt{0,7}< 0,8\)
Bài 2 :
Câu a : \(3< \sqrt{10}< 4\Leftrightarrow\sqrt{9}< \sqrt{10}< \sqrt{16}\) Đúng
Câu b : \(1,1< \sqrt{1,56}< 1,2\Leftrightarrow1,21< 1,56< 1,44\) Sai
1. So sánh
a)\(6< \sqrt{37}\)
b) \(\sqrt{17}>4\)
c)\(\sqrt{0,7}>0,8\)
Thể tích thùng nước là: \(V=\pi R^2h=\dfrac{1}{4}\pi\approx0,785\left(m^3\right)< 1\left(m^3\right)\)
=>Thể tích thùng nhỏ hơn \(1m^3\) nước =>Không đựng được