Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài là a(m) , chiều rộng là b(m) (a,b >0)
Chu vì thửa ruộng : (a + b).2 = 200
⇒ a + b = 100(1)
Diện tích thửa ruộng :a.b(m2)
Nếu giảm chiều dài 10m, tăng chiều rộng 4 m, diện tích là :
(a - 10)(b+4)
Ta có :
ab - (a-10)(b+4) = ab - ab - 4a + 10b + 40 = 200
⇒ -4a + 10b = 160(2)
(1)(2) suy ra: a = 60(m) ;b = 40(m)
Vậy thửa ruộng có chiều dài là 60m , chiều rộng là 40m
gọi chiều dài là a, chiều rộng là b, ta có
\(\hept{\begin{cases}\left(a+b\right)x2=300\\\left(\frac{a}{2}+3b\right)2=300\end{cases}}\)
=> \(\hept{\begin{cases}a=120\left(m\right)\\b=30\left(m\right)\end{cases}}\)
=> diện tích hình chữ nhật là: 120x30=3600(m2)
Nửa chu vi thửa ruộng : 300 : 2 = 150m
Gọi x(m) là chiều dài thửa ruộng ( 0 < x < 150 )
=> Chiều rộng thửa ruộng = 150 - x (m)
Giảm chiều dài 2 lần => Chiều dài mới = 1/2x (m)
Tăng chiều rộng 3 lần => Chiều rộng mới = 3( 150 - x ) = 450 - 3x
Khi đó chu vi thửa ruộng không đổi
=> Ta có phương trình : 1/2x + 450 - 3x = 150
<=> -5/2x = -300 <=> x = 120 (tm)
Vậy chiều dài thửa ruộng là 120m , chiều rộng thửa ruộng là 30m
Diện tích thửa ruộng = 120.30 = 3600m2
Nửa chu vi thửa ruộng : 200 : 2 = 100m
Gọi chiều dài thửa ruộng là x ( m ; 0 < x < 100 )
=> Chiều rộng thửa ruộng = 100 - x (m)
Theo bài ra ta có pt :
x( 100 - x ) - ( x - 10 )( 104 - x ) = 200
<=> 100x - x2 - ( -x2 + 114x - 1040 ) = 200
<=> 100x - x2 + x2 - 114x + 1040 = 200
<=> -14x = -840
<=> x = 60 (tm)
Vậy chiều dài thửa ruộng là 60m
chiều rộng thửa ruộng là 100 - 60 = 40m
trả lời
xin lỗi chị nha bài này e không biết giải
chị vào học 24 hỏi hay xem câu hỏi tương tự kham khảo nha
chuc chị học tốt
trả lời
xin lỗi chị nha bài này e không biết giải
chị vào học 24 hỏi hay xem câu hỏi tương tự kham khảo nha
chuc chị học tốt
4:
Gọi chiều rộng là x
=>Chiều dài là 2x
Theo đề, ta có: (2x+6)(x+6)=2x^2+558
=>2x^2+12x+6x+36=2x^2+558
=>18x=522
=>x=29
=>Chiều dài là 58m
Nửa chu vi hcn là 28:2=14(m)
Gọi cd hcn là x (m) \(\rightarrow\)cr hcn là 14-x (m)
Áp dụng định lý :Py-ta-go trong tam giác vuông tạo bởi đường chéo và 2 cạnh của hcn,ta có phương trình:
\(x^2+\left(14-x\right)^2=10^2\)
\(\Leftrightarrow\) \(x^2+196-28x+x^2=100\)
\(\Leftrightarrow\) \(2x^2-28x+96=0\)
\(\Leftrightarrow\) \(2x^2-16x-12x+96=0\)
\(\Leftrightarrow\) \(2x\left(x-8\right)-12\left(x-8\right)=0\)
\(\Leftrightarrow\) \(\left(x-8\right)\left(2x-12\right)=0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x-8=0\\2x-12=0\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=8\\x=6\end{cases}}\)
Với x=8 \(\rightarrow\)cd hcn là 8m.Cr hcn là : 14-8=6(m) \(\rightarrow\)thỏa mãn
Với x=6\(\rightarrow\)cd hcn là 6m.Cr hcn là : 14-6=8(m) \(\rightarrow\)vô lý vì cr ko thể lớn hơn cd
Vậy : Cd hcn là 8m
Cr hcn là 6m