K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Gọi 2 cạnh góc vuông và cạnh huyền của tam giác đó lần lượt là a;b;c

Theo đề bài ta có : \(S=\frac{ab}{2}=150m^2\Rightarrow ab=300\left(m\right)\)

Và \(\frac{a}{3}=\frac{b}{4}\) \(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{ab}{3.4}=\frac{300}{12}=25=5^2\)

\(\Rightarrow\left(\frac{a}{3}\right)^2=5^2\Rightarrow\frac{a}{3}=5\Rightarrow a=15\)

\(\Rightarrow\left(\frac{b}{4}\right)^2=5^2\Rightarrow\frac{b}{4}=5\Rightarrow b=20\)

Áp dụng định lý pitago ta có :

\(c^2=a^2+b^2=15^2+20^2=225+400=625=25^2\)

\(\Rightarrow c=25\left(m\right)\)

Vậy cạnh huyền của tam giác đó dà 25m .

24 tháng 2 2017

Gọi độ dài 2 cạnh góc vuông là a và b. Ta có: 3a=4b => a=\(\frac{4b}{3}\)(1)

và a.b=150.2=300 <=> \(\frac{4b}{3}.b=300\)=> b.b=225=15.15 => b=15 (cm). Thay vào (1) => a=\(\frac{4.15}{3}\)=20 (cm)

=> Độ dài cạnh huyền là: \(\sqrt{15^2+20^2}=\sqrt{225}\)=25 (cm)

12 tháng 12 2017

Giả sử tam giác đã cho là tam giác ABC có BC là 45 cm 

Vì độ dài 2 cạnh góc vuông tỉ lệ với 3 và 4 nên ta đặt AB là 3x

Ac là 4x 

Áp dụng định lý Py-ta-go

BC 2=Ab 2+Ac 2

452=(3x)2+(4x)2

2025=9x2+16x2

2025=25x2

2=81

X=9

Ab=9.3=27(cm)

Ac=9.4(cm)

31 tháng 1 2020

Gọi độ dài các cạnh góc vuông lần lượt là a, b ( a,b > 0 )

Theo định lí Pytago ta có: \(a^2+b^2=45^2=2025\)

Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\)\(\Rightarrow\left(\frac{a}{3}\right)^2=\left(\frac{b}{4}\right)^2=\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{2025}{25}=81\)

\(\Rightarrow a^2=81.9=729\)\(\Rightarrow a=\pm27\)

     \(b^2=81.16=1296\)\(\Rightarrow b=\pm36\)

mà \(a,b>0\)\(\Rightarrow a=27\)\(b=36\)

Vậy độ dài các cạnh góc vuông lần lượt là 27cm và 36cm

11 tháng 1 2018

Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:

\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)

Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\) 

                                          Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

                                                \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)

                                        \(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\) 

                                             \(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)     

                                           Vậy AB = 2,4 cm

                                                  AC = 3,2 cm

                                                  BC = 4 cm                     

giả sử tam giác ABC vuông tại A(AC>AB)

ta có BC=102 cm

AC = (15.AB )/8 

tam giác ABC vuông tại A(giả thiết)

=> AB2 + AC2 =BC2

(=) AB2 + 225/64 AB2 = 1022 = 10404

(=) 289 AB2 = 10404.64=665856

=> AB= 2304

=> AB = \(\sqrt{2304}=48\)

AC= 15/8 . 48 = 90 (cm)

#Học-tốt

24 tháng 2 2020

Giả sử hai cạnh góc vuông cần tìm là a và b  (cm) ( b>a>0)

Vì hai canh góc vuông tỉ lệ với 8 và 15 nên a:b=8:15

hay a/8=b/15=k (k>0)

suy ra a=8k, b = 15k (1) 

vì tam giác vuông có cạnh huyền bằng 102 nên a^2 + b^2= 1022 (2)

từ (1) va (2) suy ra 64k2 + 225 k2 = 10404

289 k2 = 10404

k2=36

k=6

a=48 (cm), b = 90 (cm)

Đặt 2 cạnh góc vuông và cạnh huyên của tam giác lần lượt là  \(a;b;c\left(a;b\ne0\right)\)

Vì các cạnh góc vuông của tam giác lần lượt tỉ lệ với 8 và 15 \(\Rightarrow\frac{a}{8}=\frac{b}{15}\Leftrightarrow\frac{a^2}{8^2}=\frac{b^2}{15^2}\)

Vì là tam giác vuông \(\Rightarrow a^2+b^2=c^2\) ( ĐL Pytago ) . Áp dụng t/c dãy tỉ số bằng nhau

Ta có : \(\frac{a^2}{8^2}=\frac{b^2}{15^2}=\frac{a^2+b^2}{8^2+15^2}=\frac{c^2}{64+225}=\frac{10404}{289}=36\)

Vì \(\frac{a^2}{8^2}=36\Rightarrow\sqrt{\frac{a^2}{8^2}}=\sqrt{36}\Rightarrow\frac{a}{8}=6\Leftrightarrow a=6.8=48\)

Vì \(\frac{b^2}{15^2}=36\Rightarrow\sqrt{\frac{b^2}{15^2}}=\sqrt{36}\Rightarrow\frac{b}{15}=6\Leftrightarrow b=15.6=90\)

Vậy độ dài hai cạnh góc vuông của tam giác lần lượt là 48 và 90

7 tháng 1 2017

3 tháng 2 2017

gọi độ dài 2 cạnh góc vuông đó là A,B(A,B>0)

VÌ 2 CẠNH GÓC VUÔNG TỈ LỆ VỚI 3,4 =>\(\frac{A}{3}\) =\(\frac{B}{4}\)

VÌ CẠNH HUYỀN ĐÓ BẰNG 45 CM =>A+B=45

ÁP DỤNG ĐỊNH LÝ DTSBN TA CÓ 

\(\frac{A}{3}\) = \(\frac{B}{4}\)=...........

Giải chi tiếtBài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng...
Đọc tiếp

Giải chi tiết

Bài 2: Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC.

Bài 3: Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

Bài 4: Cho tam giác ABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy một điểm E sao cho HE = AD. Đường thẳng vuông góc với AH tại D cắt AC tại F. Chứng minh rằng EB ^ EF.

Bài 5: Cho tam giác ABC có độ dài các cạnh bằng 3cm,4cm,5cm.Chứng minh rằng tam giác ABC vuông.

Bài 6: Cho tam giác ABC có độ dài các cạnh bằng 6cm,8cm,10cm.Chứng minh rằng tam giác ABC vuông.

Bài 7:Độ dài các cạnh góc vuông của một tam giác vuông tỉ lệ với 8 và 15, cạnh huyền dài 51cm. Tính độ dài hai cạnh góc vuông.

3

Bài 3: 

Gọi độ dài hai cạnh góc vuông lần lượt là a,b

Theo đề, ta có: a/8=b/15

Đặt a/8=b/15=k

=>a=8k; b=15k

Ta có: \(a^2+b^2=51^2\)

\(\Leftrightarrow289k^2=2601\)

=>k=3

=>a=24; b=45

Bài 6: 

Xét ΔABC có \(10^2=8^2+6^2\)

nên ΔABC vuông tại A

22 tháng 1 2022

Refer:

2, 

Ta có:AH là đường cao ΔABC

⇒AH ⊥ BC tại H

⇒∠AHB=∠AHC=90°

⇒ΔAHB và ΔAHC là Δvuông H

Xét ΔAHB vuông H có:

     AH² + HB²=AB²(Py)

⇔24² + HB²=25²

⇔         HB²=25² - 24²

⇔         HB²=49

⇒         HB=7(đvđd)

Chứng minh tương tự:HC=10(đvđd)

Ta có:BC=BH + CH=7 + 10=17(đvđd)