Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình trình bày khác bạn ST CTV nhé :) nhưng cũng đúng
Gọi 3 cạnh của tam giác lần lượt là a , b , c
Theo đề bài ta có :
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
\(\Rightarrow\)\(a=7.3=21\)
\(b=7.4=28\)
\(c=7.5=35\)
Vậy độ dài 3 cạnh lần lượt dài là 21 cm ; 28 cm ; 35 cm
Gọi 3 cạnh của tam giác là a,b,c
Vì a,b,c tỉ lệ thuận với 3;4;5 nên \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
=> a/3 = 5 => a = 15
b/4 = 5 => b = 20
c/5 = 5 => c = 25
Vậy...
Gọi độ dài của 3 cạnh tam giác lần lượt là: a, b, c
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{84}{12}=7\)
Khi đó:
\(\dfrac{a}{3}=7\Rightarrow a=7.3=21\left(cm\right)\)
\(\dfrac{b}{4}=7\Rightarrow b=7.4=28\left(cm\right)\)
\(\dfrac{c}{5}=7\Rightarrow c=7.5=35\left(cm\right)\)
Gọi x (cm), y (cm), z (cm) lần lượt là độ dài ba cạnh của tam giác đó (x, y, z > 0)
Do chu vi của tam giác là 84 cm nên x + y + z = 84
Do ba cạnh tỉ lệ với 3; 4; 5 nên \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{84}{12}=7\)
\(\dfrac{x}{3}=7\Rightarrow x=7.3=21\left(cm\right)\)
\(\dfrac{y}{4}=7\Rightarrow y=7.4=28\left(cm\right)\)
\(\dfrac{z}{5}=7\Rightarrow z=7.5=35\left(cm\right)\)
Vậy độ dài ba cạnh của tam giác lần lượt là: 21 cm, 28 cm, 35 cm
Gọi a,b,c là độ dài 3 cạnh của tam giác đó
Theo đề ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}\)
Đặt: \(\dfrac{a}{3}=\dfrac{b}{4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Tam giác vuông. Áp dụng định lí Pitago ta có:
a2 + b2 = c2
=> (3k)2 + (4k)2 = c2
=> 9k2 + 16k2 = c2
=> 25k2 = c2
=> c = 5k
Theo đề ta có:
a + b + c = 24
=> 3k + 4k + 5k = 24
=> 12k = 24
=> k = 2
Mà: \(\left\{{}\begin{matrix}a=3k\\b=4k\\c=5k\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=3.2=6\left(cm\right)\\b=4.2=8\left(cm\right)\\c=5.2=10\left(cm\right)\end{matrix}\right.\)
Vậy: Độ dài 3 cạnh của tam giác đó là 6, 8, 10
3. Cho tam giác có ba cạnh tỉ lệ với 3; 4; 6 và chu vi là 42m. Tính độ dài các cạnh của tam giác đó.
Gọi 3 cạnh tam giác là a,b,c(m;a,b,c>0)
Áp dụng tc dtsbn:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{6}=\dfrac{a+b+c}{3+4+6}=\dfrac{42}{13}\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{42}{13}\cdot3=\dfrac{126}{13}\left(m\right)\\b=\dfrac{42}{13}\cdot4=\dfrac{168}{13}\left(m\right)\\c=\dfrac{42}{13}\cdot6=\dfrac{252}{13}\left(m\right)\end{matrix}\right.\)
Vậy ...
Gọi độ dài 3 cạnh của tam giác đó lần lượt là a, b, c \(\left(a,b,c\inℕ^∗;a,b,c< 36\right)\)
Ta có: \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\)
\(\Rightarrow a=9\), \(b=12\), \(c=15\)
Vậy độ dài 3 cạnh của tam giác lần lượt là \(9cm\), \(12cm\), \(15cm\)
gọi độ dài 3 cạnh của tam giác đó lần lượt là x;y;z(x;y;z>0)
ta có :
x/3=y/5=z/7 và x+y+z=150
áp dụng tc dãy ts = nhau ta có :
x/3=y/5=z/7=x+y+z/3+5+7=150/15=10
=>x/3=10=>x=30 cm
=>y/5=10=>y=50 cm
=>z/7=10=>z=70 cm
vậy ...
Gọi độ dài ba cạnh là x;y;z
Theo bài ra ta có : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=150\)
Áp dụng dãy tỉ bằng nhau : \(\frac{x}{3}+\frac{x}{5}+\frac{x}{7}=\frac{150}{15}=10\)
\(\Rightarrow\) \(\frac{x}{3}=10\Rightarrow x=30\)
\(\Rightarrow\frac{y}{5}=10\Rightarrow x=50\)
\(\Rightarrow\)\(\frac{z}{7}=10\Rightarrow z=70\)
P/s : Sai đừng trách nha - Bởi mình mới lớp 6
Gọi độ dài mỗi cạnh của tam giác lần lượt là x(cm),y(cm),z(cm) . Theo đề bài ta có :
\(x:y:z=3:4:6\)hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}\)và x + y + z = 65
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{x+y+z}{3+4+6}=\frac{65}{13}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{6}=5\end{cases}}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=30\end{cases}}\)
gọi độ dài mỗi cạnh lần lượt là A, B, C
Ta có: \(\frac{A}{3}=\frac{B}{4}=\frac{C}{6}=\frac{A+B+C}{3+4+6}=\frac{65}{13}=5\)
Độ dài mỗi cạnh là:
C1:\(\frac{A}{3}=5\Rightarrow A=5\cdot3=15cm\)
C2:\(\frac{B}{4}=5\Rightarrow B=5\cdot4=20cm\)
C3:\(\frac{C}{6}=5\Rightarrow C=5\cdot6=30cm\)
\(\Rightarrow\)Độ dài lần lượt của ba cạnh của hình tam giác là 15cm, 20cm, 30cm
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
Gọi a , b và c lần lượt là độ dài 3 cạnh của tam giác đó tỉ lệ với 1:3:4 .
a/1=b/3=c/4 và a+b+c=24 (chu vi tam giác)
Áp dụng tính chất dãy tỉ lệ số bằng nhau :
a/1=b/3=c/4=a+b+c/1+3+4=24/8=3
Suy ra :a/1=3=>a=1.3=3
b/3=3=>b=3.3=9
c/4=3=>c=4.3=12
Vậy độ dài 3 cạnh của tam giác đó tỉ lệ 1,3,4 lần lượt là 3,9 và 12 (cm)
Gọi 3 cạnh của tam giác lần lượt là \(a, b, c ( cm) (a,b,c > 0)\)
Theo đề bài 3 cạnh của tam giác tỉ lệ với 3, 4, 5 nên ta có tỉ số \(a : b : c = 3 : 4 : 5.\)
Và chu vi tam giác là 60cm nên ta có:\( a + b + c = 60.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\( \Rightarrow \dfrac{a}{3} = \dfrac{b}{4} = \dfrac{c}{5} = \dfrac{{a + b + c}}{{12}} = \dfrac{{60}}{{12}} = 5\)
\( \Rightarrow a = 3.5=15 ; b = 4.5=20 ; c = 5.5=25.\)
Vậy 3 cạnh của tam giác có độ dài là \(15cm, 20cm, 25cm.\)