Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài ba cạnh của tam giác đó lần lượt là x,y,z.Theo đề bài ta có :
x : y : z = 3 : 4 : 5 hay \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> x= 5.3 = 15,y = 5.4 = 20,z = 5.5 = 25
Vậy độ dài của ba cạnh lần lượt là 15cm,20cm,25cm
Gọi độ dài 3 cạnh của tam giác lần lượt là \(a,b,c\inℕ^∗;a,b,c\left(cm\right)\)
Do độ dài 3 cạnh tỉ lệ với \(3,4,5\)
\(\Rightarrow\)\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Do chu vi của tam giác là \(60cm\)
\(\Rightarrow\)\(a+b+c=60\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{60}{12}=5\)
Do đó:
\(\frac{a}{3}=5\Rightarrow a=5.3=15\)
\(\frac{b}{4}=5\Rightarrow b=5.4=20\)
\(\frac{c}{5}=5\Rightarrow c=5.5=25\)
Vậy độ dài lần lượt của 3 cạnh tam giác lần lượt là: \(15,20,25\)
+ BC = BH + HC = 25 + 36 = 61 (cm)
+ ΔABH vuông tại H và ΔABC vuông tại A có:
⇒AB2=BH.BC=25.(25+36)=1525
Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé
Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c
Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)
\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)
Vì tam giác vuông nên ta theo pytago ta có: a2 + b2 = c2 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)
⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3
a = 3.3 = 9 (cm)
b = 3.4 = 12 (cm)
c = 3.5 = 15 (cm)
Kết luận: độ dài cạnh bé của góc vuông là: 9 cm
dộ dài cạnh lớn của góc vuông là 12 cm
độ dài cạnh huyền là 15 cm
Bài 9:
a,Gọi độ dài cạnh góc vuông là: a
Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)
b, Gọi độ dài cạnh góc vuông là :b
Theo pytago ta có:
b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)
Bài 8 cô làm rồi nhé.
Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:
a; b theo bài ra ta có:
\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)
Theo pytago ta có: a2 + b2 = 522 = 2704 (2)
Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16
⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20
b2 = 144.16 = (12.4)2 ⇒ b = 48
Gọi độ dài ba cạnh của tam giác lần lượt là a, b, c ( a, b, c > 0 )
và
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Chu vi của tam giác là:
Vậy ,.................
Gọi độ dài 3 cạnh của hình tam giác lll : x; y; z (cm)
(đk : x; y; z ∈ N*)
Theo đề bài ta có :
x/3 = y/4 = z/5 và x + y - z = 4
Áp.........................ta có:
x/3 = y/4 = z/5 = (x + y - z)/(3 + 4 - 5) = 4/2 = 2
=> x/3 = 2 => x = 6
y/4 = 2 => y = 8
z/5 = 2 => z = 10
Chu vi hình tam giác là:
6 + 8 + 10 = 24 (cm)
Vậy . . .
gọi độ dài các cạnh lần lượt là a,b,c ( a<b<c)
Ta có a/3=c/5
Áp dụng t/c dãy tỉ số bằng nhau ta có
a/3=c/5=c-a/5-3= 8/2=4
=> a= 4x3= 12
c= 4x5=20
b/4=4 => b=4x4=16
Gọi \(h_a;h_b;h_c>0\left(cm\right)\) lần lượt là đường cao tương ứng với 3 cạnh \(a;b;c>0\left(cm\right)\)
Theo đề bài ta có :
\(\dfrac{h_a}{\dfrac{1}{3}}=\dfrac{h_b}{\dfrac{1}{4}}=\dfrac{h_c}{\dfrac{1}{5}}\)
mà Diện tích tam giác là :
\(S=\dfrac{1}{2}.h_a.a=\dfrac{1}{2}.h_b.b=\dfrac{1}{2}.h_c.c\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
mà \(a+b+c=36\left(cm\right)\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{36}{12}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=2\\\dfrac{b}{4}=2\\\dfrac{c}{5}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{1}{6}\\h_b=\dfrac{1}{8}\\h_c=\dfrac{1}{10}\end{matrix}\right.\)
\(\Rightarrow S=\dfrac{1}{2}.h_a.a=\dfrac{1}{2}.6.\dfrac{1}{6}=\dfrac{1}{2}\left(cm^2\right)\)