Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác thứ nhất có các cạnh là 8 < x < y
Tam giác thứ hai có các cạnh là x < y < 27
Vì hai tam giác đồng dạng nên 8 x = x y = y 27 ta có x.y = 8.27 và x 2 = 8 y .
Do đó x 2 = 8 y = 8 . 8.27 x nên x 3 = 64 . 27 = ( 4 . 3 ) 3
Vậy x = 12, y = 18
Đáp án: C
6.)
Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.
Theo đề:\(A'B'\)=4,5
Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)
Cho ΔABC với đường cao AH.
Gọi M, N, I là trung điểm của AB, AC, AH.
Lấy E đối xứng với I qua M, D đối xứng với I qua N.
⇒ Hình chữ nhật BEDC là hình cần dựng.
Thật vậy:
Ta có ΔEBM = ΔIAM và ΔDCN = ΔIAN
⇒ SEBM = SAMI và SCND = SAIN
⇒ SABC = SAMI + SAIN + SBMNC = SEBM + SBMNC + SCND = SBCDE.
Suy ra SABC = SBCDE = BE.BC = 1/2.AH.BC. (Vì BE = IA = AH/2).
Ta đã tìm lại công thức tính diện tích tam giác bằng một phương pháp khác
Cho tam giác ABC với đường cao AH. Ta dựng hình chữ nhật có một cạnh bằng một cạnh của tam giác ABC và có diện tích bằng diện tích tam giác ABC như hình dưới
Ta có ∆EBM = ∆KAM và ∆DCN = ∆ KAN
Suy ra
SBCDE = SABC= BC. AH
Ta đã tìm được công thức tính diện tích tam giác bằng một phương pháp khác.
Tam giác thứ nhất có các cạnh là 12 < x < y
Tam giác thứ hai có các cạnh là x < y < 40,5
Vì hai tam giác đồng dạng nên 12 x = x y = y 40 , 5 ta có x.y = 12.40,5 và x 2 = 12 y .
Do đó x 2 = 12 y = 12 . 12.40 , 5 x nên x 3 = 12 . 12 . 40 , 5 = 18 3 suy ra x = 18
Suy ra y = 12.40 , 5 18 = 27
Vậy x = 18, y = 27 => S = 18 + 27 = 45
Đáp án: A