Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm
B. 10 cm, 24 cm
C. 12 cm, 24 cm
D. 15 cm, 24 cm
Gọi độ dài 2 cạnh là \(x\), \(y\)( \(x\), \(y\)> 0 )
Theo định lý Pitago ta có : \(\frac{x}{5}=\frac{y}{12}\)\(\Rightarrow\)\(\frac{x^2}{25}=\frac{y^2}{144}=\frac{x^2+y^2}{25+144}\)
= \(\frac{676}{169}=4\)
\(\Leftrightarrow\)\(x^2=25.4\)
\(\Leftrightarrow\)\(x^2=100\)
\(\Leftrightarrow\)\(x=10\)cm
Ta lại có :
\(\Leftrightarrow\)\(y^2=144.4\)
\(\Leftrightarrow\)\(y^2=576\)
\(\Leftrightarrow\)\(y=24\)
Vậy ...................
=> Chọn B
Hok tốt
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
Tìm được độ dài các cạnh của tam giác lần lượt là:
6 cm, 8 cm, 10 cm.
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/5=b/12=k
=>a=5k; b=12k
a^2+b^2=52^2
=>169k^2=52^2
=>k=4
=>a=20; b=48