Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài của tấm bìa là x (x > 3) (dm)
⇒ Chiều rộng của tấm bìa là x – 3 (dm)
Nếu tăng chiều dài 1 dm và giảm chiều rộng 1 dm thì diện tích là 66 d m 2 nên ta có phương trình:
(x + 1)(x – 3 – 1) = 66
⇔ (x + 1)(x – 4 ) = 66
⇔ x 2 – 3x – 4 – 66 = 0
⇔ x 2 – 3x – 70 = 0
Δ = 3 2 - 4.(-70) = 289 ⇒ ∆ = 17
⇒ Phương trình đã cho có 2 nghiệm
Do x > 3 nên x =10
Vậy chiều dài của tấm bìa là 10 dm
Chiều rộng của tấm bìa là 7 dm.
Đặt chiều rộng là \(x\left(m\right),x>0\).
Khi đó độ dài đường chéo là \(x+10\left(m\right)\).
Áp dụng định lí Pythagore ta có:
\(x^2+20^2=\left(x+10\right)^2=x^2+20x+100\)
\(\Leftrightarrow x=15\)(tm)
Diện tích tấm vải là: \(20\times15=300\left(m^2\right)\)
Gọi chiều dài miếng bìa là
\(x\left(cm;x>4\right)\)
Chiều rộng miếng bìa là:
\(\frac{3x}{5}\left(cm\right)\)
Diện tích ban đầu là:
\(\frac{x\times3}{5}=x^2\times\frac{3}{5}\left(cm^2\right)\)
Diện tích mới của miếng bìa là:
\(\left(x-4\right)\times\left(\frac{3x}{5}-1\right)=\frac{1}{2}\times x^2\times\frac{3}{5}\Leftrightarrow x=10\)
Chu vi miếng bìa đó là:
\(2\times\left(10+\frac{3}{5}\times10\right)=32\left(cm\right)\)
Đáp số: 32 (cm)
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của hình chữ nhật(Điều kiện: 0<a<14; 0<b<14 và \(a\ge b\))
Vì chu vi của mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
\(\Leftrightarrow a+b=14\)(1)
Ta có: a+b=14(cmt)
mà \(a\ge b\)
nên 2a>14
hay a>7
\(\Leftrightarrow b< 7\)
Vì độ dài đường chéo mảnh đất là 10m nên ta có phương trình:
\(a^2+b^2=10^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2+b^2-28b+196-100=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left[{}\begin{matrix}b=6\left(nhận\right)\\b=8\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-6=8\left(nhận\right)\\b=6\end{matrix}\right.\)
Vậy: Chiều dài của mảnh đất là 8m; chiều rộng của mảnh đất là 6m
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)(TM)
Vậy HPT có nghiệm (x;y)= (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 8cm và 6cm
Nửa chu vi tấm sắt là 96 : 2 = 48 (cm)
Gọi chiều dài của tấm sắt là x (cm) (x > 20)
Chiều rộng của tấm sắt sẽ là 48 – x (cm)
Diện tích của tấm sắt ban đầu là x (48 – x) ( c m 2 )
Người ta cắt ở mỗi góc tấm sắt một hình vuông cạnh là 4cm nên diện tích phần cắt đi là: 4.4.4 = 64 ( c m 2 )
Diện tích còn lại của tấm sắt là 448 c m 2 nên ta có phương trình:
Vậy chiều dài và chiều rộng của tấm sắt lần lượt là 32cm và 16cm
Đáp án: A
Gọi chiều dài của tấm bìa đó là x (x >17) (cm)
Suy ra chiều rộng của tấm bìa là x – 17 (cm)
Áp dụng định lý Py – ta – go, ta có phương trình:
x2 + (x – 17)2 = 532
⇒ x2+ x2 – 34x + 289 – 2809 = 0
⇒ 2x2 – 34 x – 2520 = 0
⇒ x = 45 hoặc x = -28 (loại)
Suy ra chiều rộng của tấm bìa là 28 (cm), Chu vi của tấm bìa các tông là 146 (cm)