Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Δ φ = 2 π d λ
Cách giải:
+ Áp dụng hệ thức lượng trong tam giác vuông OMN có đường cao OH:
1 O H 2 = 1 O M 2 + 1 O N 2 ⇔ 1 O H 2 = 1 34 2 + 1 50 2 ⇒ O H = 28,1 c m
+ Gọi d là khoảng cách từ O đến K (K là 1 điểm bất kì trên MN)
+ Độ lệch pha giữa K và O là: Δ φ = 2 π d λ
+ Để K dao động cùng pha với O thì: Δ φ = 2 π d λ = 2 k π ⇒ d = k λ
+ Số điểm dao động cùng pha với o trên đoạn MN bằng số giá trị k nguyên thoả mãn:
28,1 ≤ k λ ≤ 34 ⇒ 7,025 ≤ k ≤ 8,5 ⇒ k = 8 28,1 < k λ ≤ 50 ⇒ 7,025 < k ≤ 12,5 ⇒ k = 8 ; 9 ; 10 ; 11 ; 12
Có 6 giá trị của k thoả mãn ⇒ trên đoạn MN có 6 điểm dao động cùng pha với nguồn
Đáp án C
Phương pháp: Phương trình của li độ và vận tốc:
Phương trình li độ và vận tốc tại M và N:
Đáp án D
Theo giả thuyết điểm N dao động nhanh pha hơn điểm M: 2 π 3 (tương ứng λ/3).
Cùng với giả thuyết hai điểm có cùng biên độ, điểm N sớm pha hơn M, vậy ta kết luận pha của hai điểm như hình vẽ.
Vậy điểm M có pha π 6 , như hình vẽ. Và biểu thức liên hệ giữa biên độ là:
Đáp án B
Phương trình dao động của phần tử tại O: u O = A cos ω t + 2 π d λ