Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=A\sin(\omega t)+A\cos(\omega t)\)
\(=A\sin(\omega t)+A\sin(\omega t+\dfrac{\pi}{2})\)
\(=2A\sin(\omega t+\dfrac{\pi}{4}).\cos \dfrac{\pi}{4}\)
\(=A\sqrt 2\sin(\omega t+\dfrac{\pi}{4})\)
Vậy biên độ dao động là: \(A\sqrt 2\)
Chọn C.
\(E=\frac{1}{2}\omega^2A^2\) nên vận tốc truyền sóng không ảnh hưởng.
chọn D
\(u=2\cos\left(20\pi\left(t-\frac{x}{25}\right)\right)=2\cos\left(20\pi t-\frac{4\pi x}{5}\right)\)
\(\Rightarrow\lambda=\frac{5}{2}\left(m\right)=250\left(cm\right)\)
\(f=\frac{\omega}{2\pi}=\frac{20\pi}{2\pi}=10\left(Hz\right)\)
\(\Rightarrow v=f.\lambda=10.250=2500\left(cm/s\right)=25\left(m/s\right)\)
Đáp án C
Hướng dẫn bạn:
- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)
\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)
- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)
\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)
Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.
Ta có: \(\lambda=\frac{v}{f}=\frac{80}{10}=8\left(cm\right)\)
\(\Rightarrow d=\frac{\lambda}{4}=\frac{8}{4}=2\left(cm\right)\)
Vậy chọn B.
Đáp án C