Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo công thức liên hệ chiều dài day và số bụng sóng ta có $2,4=8.\dfrac{\lambda}{2} \Rightarrow \lambda =0,6m=60 cm$
Công thức tính biên độ tại một điểm bất kì trên sợi dây cách nút gần nhất một khoảng là d đang có sóng dừng với biên độ tại bụng là 2A:
$a=2A \cos \left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right).$
Gọi khoảng cách từ A tới nút gần nhất là d thì do $\dfrac{\lambda}{4}<20$ nên ta có B cách nút gần nhất với nó một khoảng 10-d.
$| a_A-a_B |=2A |\left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right)-\left(\dfrac{2 \pi \left(10-d\right)}{\lambda} +\dfrac{\pi }{2} \right) |$
$=4A |\sin \left(\dfrac{10 \pi }{\lambda}+\dfrac{\pi }{2} \right) | |\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |.$
Biểu thức trên lớn nhất khi $|\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |$ lớn nhất, tức là bằng 1.
Thay số ta có đáp án D
Đáp án A
+ Khi có sóng dừng, phần tử dây cách nút một đoạn d dao dộng với biên độ a = A sin 2 π d λ , phần tử dây cách bụng một đoạn d dao động với biên độ a = A cos 2 π d λ .
+ Với a 2 = 3 mm, lớn hơn a 1 = 2 mm → hai điểm gần nhau nhất dao động cùng biên độ a 2 phải đối xứng nhau qua bụng sóng, hai điểm dao động với cùng biên độ a 1 phải đối xứng nhau qua nút sóng
→ a 1 = A sin π d 2 a 2 = A cos π d 2 ↔ 2 = A sin 10 π λ 3 = A c o s 10 π λ → A = 2 2 + 3 2 = 13 λ = 53 mm.
+ Khoảng cách giữa hai nút sóng liên tiếp là Δ d = λ 2 = 26 , 7 m m
\(\lambda = v/f = 2cm.\)
Số điểm dao động cực đại thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -10 < k\lambda < 10. \\ \Rightarrow -5 < k < 5.\\ \Rightarrow k = -4,-3,-2,-1,0,1,2,3,4.\)
Có 9 điểm dao động với biên độ cực đại.
Số điểm dao động cực tiểu thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -10 < (2k+1)\lambda/2 < 10 \\ \Rightarrow -5,5 < k < 4,5 \\ \Rightarrow k = -5,-4,-3,-2,-1,0,1,2,3,4.\)
Có 10 điểm dao động với biên độ cực tiểu.
2 điểm S1,S2 cung pha,giữa chúng có 10 điểm không dao động nghĩa là 10 điểm này cũng cùng pha với 2 nguồn. Với 10 điểm ở giữa sẽ chia AB thành 11 đoạn,10 điểm này lại cùng pha,khoảng cách giữa 2 điểm cùng pha gần nhất là lamda, vậy 11lamda=11=> lamda=1,v=f.lamda=26 B
\(\lambda = v/f = 5cm.\)
\(\triangle \varphi = \frac{\pi}{2}.\)
Số cực đại trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (k+\frac{\triangle\varphi)}{2 \pi}\lambda < AB \\ \Rightarrow -12 < (k+\frac{1}{4})\lambda < 12. \\ \Rightarrow -2,65 < k < 2,15 \\ \Rightarrow k = -2,-1,0,1,2.\)
Có 5 cực đại.
Số cực tiểu trên đoạn AB thỏa mãn:
\(-AB < d_2-d_1 < AB \Rightarrow -AB < (2k+1+\frac{\triangle\varphi}{\pi})\frac{\lambda}{2} < AB \\ \Rightarrow -12 < (2k +1 + 1/2)\lambda/2 < 12 \\ \Rightarrow -3,15 < k < 1,65 \\ \Rightarrow k = -3,-2,-1,0,1.\)
Có 5 cực tiểu.
\(\lambda = v.T = \frac{v}{f}=\frac{50}{10}=5cm.\)
Tại M: \(d_{2M}-d_{1M}=18-3=15=3.5\) => M dao động mạnh nhất.
Tại N: \(d_{2N}-d_{1N}=45-10=35=7.5\) => N dao động mạnh nhất.
Chọn đáp án D
@ Lời giải:
+ Các phần tử giữa hai nút sóng liền kề nằm trên cùng một bó sóng.
+ Các phân tử trên cùng 1 bó sóng luôn dao động cùng pha.