Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi chiều dài và chiều rộng của sân bóng lần lượt là \(x,y\left(m\right);x,y>0\).
Vì chu vi là \(140m\)nên \(2\left(x+y\right)=140\Leftrightarrow x+y=70\)
Vì giảm chiều rộng đi \(5m\)tăng chiều dài thêm \(8m\)thì diện tích sân bóng không đổi nên
\(\left(x+8\right)\left(y-5\right)=xy\Leftrightarrow-5x+8y=40\)
Ta có hệ phương trình:
\(\hept{\begin{cases}x+y=70\\-5x+8y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}5x+5y=350\\-5x+8y=40\end{cases}}\Leftrightarrow\hept{\begin{cases}x=40\\y=30\end{cases}}\)(thỏa mãn)
Vậy chiều dài là \(40m\)chiều rộng là \(30m\).
gọi chiều rộng = a => chiều dài = a+10
Áp dụng định lý Pytago => a^2 + (a+10)^2 = độ dài đường chéo ^2 = 1300
=> 2a^2 +20a +100=1300
=> a^2 +10a-600 = 0
=> (a+30)(a-20) =0
=> a=20
=> chu vi sân bóng = 2(a+a+10) = 2.50 =100
Gọi chiều dài, chiều rộng lần lượt là a,b
Theo đề, ta có hệ phương trình:
a-b=9 và (a+2)(b+1)=ab+50
=>a-b=9 và a+2b=48
=>a=22 và b=13
Sửa đề: Diện tích hình chữ nhật đó giảm đi 6m vuông
Gọi chiều dài, chiều rộng lần lượt là a,b
Nửa chu vi hình chữ nhật là 38/2=19
=>a+b=19
Theo đề, ta có hệ phương trình:
a+b=19 và (a+2)(b-1)=ab-19
=>a+b=19 và -a+2b=-17
=>a=55/3 và b=2/3
Gọi chiều dài là a (m), hiều rộng là b(m)
Có a+b=140 : 2=70 (m)
Chiều dài sau khi tăng là a+8 (m)
chiều rộng sai khi giảm là b-5 (m)
Có hệ ptr a+b=70 (1)
(a+8)(b-5)=ab (2)
(2) <=> 8b-5a-40=0
<=>8b-5a=40
(1)<=> a=70-b
=> (2) <=> 8b+5b-350=40
<=>13b=390
<=>b=30(m)
=> a=40(m)
<=>43b=390