K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

Chọn A

Ta đánh số các vị trí từ 1 đến 8.

Số phần tử không gian mẫu là 

Gọi A là biến cố: “xếp được tám bạn thành hàng dọc thỏa mãn các điều kiện: đầu hàng và cuối hàng đều là nam và giữa hai bạn nam gần nhau có ít nhất một bạn nữ, đồng thời bạn Quân và bạn Lan không đứng cạnh nhau”.

TH1: Quân đứng vị trí 1 hoặc 8 => có 2 cách

Chọn một trong 3 bạn nam xếp vào vị trí 8 hoặc 1 còn lại => có 3 cách.

Xếp 2 bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau

=> có 6 cách

Xếp vị trí bạn Lan có 3 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 2.3.6.3.3! = 648 cách

TH2: Chọn 2 bạn nam ( khác Quân) đứng vào 2 vị trí 1 hoặc 8 có A 3 2  cách.

Xếp Quân và  bạn nam còn lại vào 2 trong 4 vị trí 3,4,5,6 mà 2 nam không đứng cạnh nhau => có 6 cách

Xếp vị trí bạn Lan có 2 cách.

Xếp 3 bạn nữ vào 3 vị trí còn lại có 3! cách.

=> TH này có: 

Vậy xác suất của biến cố A là 

NV
9 tháng 1

a.

Xếp 4 bạn nữ cạnh nhau: \(4!\) cách

Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách

Theo quy tắc nhân ta có: \(4!.7!\) cách

b.

Xếp 6 bạn nam: \(6!\) cách

6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách

\(\Rightarrow6!.C_7^4\) cách

c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)

d. 

Xếp 4 nữ cạnh nhau: \(4!\) cách

Xếp 6 nam cạnh nhau: \(6!\) cách

Hoán vị nhóm nam và nữ: \(2!\) cách

\(\Rightarrow4!.6!.2!\) cách

19 tháng 9 2019

Chọn đáp án B.

16 tháng 2 2019

Chọn D

Xếp ngẫu nhiên tám học sinh thành hàng ngang, có 8! cách. Suy ra  n ( Ω ) = 8! = 40320

Gọi A là biến cố cần tính xác suất.

Ta coi Hoàng, Lan, Nam ( Lan ở giữa) là một nhóm. Khi đó vì hai bên nhóm này bắt buộc là nữ nên coi nhóm này là một nam. Vậy có thể coi ta có ba nam và ba nữ.

Khi đó có hai trường hợp xảy ra.

Trường hợp 1: Nam ngồi vị trí lẻ.

Xếp ba nam vào vị trí lẻ có 3! cách.

Xếp ba nữ vào vị trí chẵn có 3! cách.

Hoán vị hai học sinh nam trong nhóm ( Hoàng- Lan- Nam) có 2! cách.

Vậy số cách sắp xếp trong trường hợp này là 3!.3!.2! = 72 cách.

Trường hợp 2: Nam ngồi vị trí chẵn.

Tương tự trường hợp này có 3!.3!.2! = 72 cách.

Suy ra n(A) = 72 + 72 = 144 cách.

Vậy 

11 tháng 10 2018

Đáp án D.

7 tháng 2 2018

Đáp án B

Số cách xếp 10 học sinh vào 10 ghế là: 10!

4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4

Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại

Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại

Vậy có 3!.5.5! = 3600 cách xếp

Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp

Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại

Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại

Vậy có 3!.4.5! = 2880 cách xếp

Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp

Vậy có 2(3600+2880) = 12960 cách xếp thỏa mãn đề bài

⇒ p = 12960 10 ! = 1 280

22 tháng 6 2018

Đáp án B

Kí hiệu 10 ghế như sau:  

Trong đó: D là ghế đỏ (dành cho nữ) và X là ghế xanh (dành cho nam)

+ Số cách xếp nữ vào ghế đỏ, nam vào ghế xanh là M = 4!6!

+ Số cách xếp sao cho Quang được ngồi cạnh Huyền (kí hiệu là N)

- Chọn 2 ghế liên tiếp khác màu: C 6 1 cách

- Xếp Quang và Huyền vào 2 ghế đó (1 cách) và xếp các bạn kia vào các ghế còn lại (3!5! cách)

=> N = 3!5!.6 => N = 3!.6!

+ Số cách xếp thỏa mãn điều kiện đề bài là M – N = 12960 cách

Xác suất cần tìm là  12960 10 ! = 1 280 .

NV
29 tháng 1

Không gian mẫu: \(8!\)

Có 2 kiểu xếp (kí hiệu N là nam, n là nữ): \(NnNnNnNn\) hoặc \(nNnNnNnN\)

Hoán vị 4 bạn nữ: \(4!\) cách

Hoán vị 4 bạn nam: \(4!\) cách

\(\Rightarrow2.4!.4!\) cách xếp thỏa mãn

Xác suất...